735 research outputs found

    Expected budget deficits and interest rate swap spreads - Evidence for France, Germany and Italy

    Get PDF
    This study analyses whether expected budget deficits have an impact on interest rate swap spreads in France, Germany and Italy. We use monthly deficit forecasts from financial market participants to take the forward-looking behaviour of financial markets into account. Results of a SUR estimation show no significant impact of expected deficits on swap spreads over the whole sample period (1994-2004). However, we find an increase in market discipline for Germany and France since the signing of the Stability and Growth Pact, and for Germany also since the start of European monetary union. --Budget deficits,interest rate swap spreads,EMU,Stability and Growth Pact

    Dielectric response effects in attosecond time-resolved streaked photoelectron spectra of metal surfaces

    Get PDF
    The release of conduction-band electrons from a metal surface by a sub-femtosecond extreme ultraviolet (XUV) pulse, and their propagation through the solid, provokes a dielectric response in the solid that acts back on the photoelectron wave packet. We calculated the (wake) potential associated with this photoelectron self-interaction in terms of bulk and surface plasmon excitations and show that it induces a considerable, XUV-frequency-dependent temporal shift in laser-streaked XUV photoemission spectra, suggesting the observation of the ultrafast solid-state dielectric response in contemporary streaked photoemission experiments.Comment: 4 pages and 4 figures, submitted to PR

    Echo of the Quantum Phase Transition of CeCu6x_{6-x}Aux_x in XPS: Breakdown of Kondo Screening

    Full text link
    We present an X-ray photoemission study of the heavy-fermion system CeCu6x_{6-x}Aux_x across the magnetic quantum phase transition of this compound at temperatures above the single-ion Kondo temperature TKT_K. In dependence of the Au concentration xx we observe a sudden change of the ff-occupation number nfn_f and the core-hole potential UdfU_{df} at the critical concentration xc=0.1x_c=0.1. We interpret these findings in the framework of the single-impurity Anderson model. Our results are in excellent agreement with findings from earlier UPS measurements %\cite{klein08qpt} and provide further information about the precursors of quantum criticality at elevated temperatures.Comment: 5 pages, 3 figures; published version, references updated, minor changes in wordin

    Band Mapping in One-Step Photoemission Theory: Multi-Bloch-Wave Structure of Final States and Interference Effects

    Full text link
    A novel Bloch-waves based one-step theory of photoemission is developed within the augmented plane wave formalism. Implications of multi-Bloch-wave structure of photoelectron final states for band mapping are established. Interference between Bloch components of initial and final states leads to prominent spectral features with characteristic frequency dispersion experimentally observed in VSe_2 and TiTe_2. Interference effects together with a non-free-electron nature of final states strongly limit the applicability of the common direct transitions band mapping approach, making the tool of one-step analysis indispensable.Comment: 4 jpg figure

    Superpenetration of a high energy Q barQ bound state through random color fields

    Full text link
    The transmission amplitude of a color dipole through a random external color field is computed in the eikonal approximation in order to study the absorption of high energy quarkonium by nuclear target. It is shown that the internal color state of the dipole becomes randomized and all possible color states are eventually equi-partitioned, while the probability of finding a color singlet bound state attenuates not exponentially, but inversely proportional to the distance L of the random field zone which the dipole has traveled.Comment: 7 pages (3 figures

    Madelung potentials and covalency effect in strained La1x_{1-x}Srx_xMnO3_3 thin films studied by core-level photoemission spectroscopy

    Full text link
    We have investigated the shifts of the core-level photoemission spectra of La0.6_{0.6}Sr0.4_{0.4}MnO3_3 thin films grown on three kinds of substrates, SrTiO3_3, (LaAlO3_3)0.3_{0.3}-(SrAl0.5_{0.5}Ta0.5_{0.5}O3_3)0.7_{0.7}, and LaAlO3_3. The experimental shifts of the La 4d and Sr 3d core levels are almost the same as the calculation, which we attribute to the absence of covalency effects on the Madelung potentials at these atomic sites due to the nearly ionic character of these atoms. On the other hand, the experimental shifts of the O 1s1s and Mn 2p2p core levels are negligibly small, in disagreement with the calculation. We consider that this is due to the strong covalent character of the Mn-O bonds.Comment: 4 pages, 5 figure

    Scanning the Quark-Gluon Plasma with Charmonium

    Full text link
    We suggest the variation of charmonium suppression with Feynman x_F in heavy ion collisions as a novel and sensitive probe for the properties of the matter created in such reactions. In contrast to the proton-nucleus case where nuclear suppression is weakest at small x_F, final state interactions with the comoving matter create a minimum at x_F=0, which is especially deep and narrow if a quark-gluon plasma is formed. While a particularly strong effect is predicted at SPS, at the higher RHIC energy it overlaps with the expected sharp variation with x_F of nuclear effects and needs comparison with proton-nucleus data. If thermal enhancement of J/\Psi production takes over at the energies of RHIC and LHC, it will form an easily identified peak, rather than dip in x_F dependence. We predict a steep dependence on centrality and suggest that this new probe is complementary to the dependence on transverse energy, and is more sensitive to a scenario of final state interactions.Comment: 5 pages including 3 figures. Stylistic and clarifying corrections are mad

    Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

    Full text link
    We have studied the chemical potential shift as a function of temperature in Nd1x_{1-x}Srx_xMnO3_3 (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples (x=0.4x=0.4 and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the ege_g band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature (TCT_C), which we attribute to the crossover from the DE to lattice-polaron regimes.Comment: 5 pages, 6 figure

    Renormalization of f-levels away from the Fermi energy in electron excitation spectroscopies: Density functional results of Nd2x_{2-x}Cex_xCuO4_4

    Full text link
    Relaxation energies for photoemission, when an occupied electronic state is excited, and for inverse photoemission, when an empty state is filled, are calculated within the density functional theory with application to Nd2x_{2-x}Cex_xCuO4_4. The associated relaxation energies are obtained by computing differences in total energies between the ground state and an excited state in which one hole or electron is added into the system. The relaxation energies of f-electrons are found to be of the order of several eV's, indicating that f-bands will appear substantially away from the Fermi energy (EFE_F) in their spectroscopic images, even if these bands lie near EFE_F. Our analysis explains why it would be difficult to observe f electrons at the EFE_F even in the absence of strong electronic correlations.Comment: 6 pages, 1 figure, 1 tabl

    Elastic Scattering Susceptibility of the High Temperature Superconductor Bi2Sr2CaCu2O8+x: A Comparison between Real and Momentum Space Photoemission Spectroscopies

    Full text link
    The joint density of states (JDOS) of Bi2Sr2CaCu2O8+x is calculated by evaluating the autocorrelation of the single particle spectral function A(k,omega) measured from angle resolved photoemission spectroscopy (ARPES). These results are compared with Fourier transformed (FT) conductance modulations measured by scanning tunneling microscopy (STM). Good agreement between the two experimental probes is found for two different doping values examined. In addition, by comparing the FT-STM results to the autocorrelated ARPES spectra with different photon polarization, new insight on the form of the STM matrix elements is obtained. This shines new light on unsolved mysteries in the tunneling data.Comment: Revised now available at: Phys. Rev. Lett. 96, 067005 (2006
    corecore