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Probing dielectric-response effects with attosecond time-resolved streaked photoelectron
spectroscopy of metal surfaces
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The release of conduction-band electrons from a metal surface by a subfemtosecond extreme ultraviolet (XUV)
pulse and their propagation through the solid provoke a dielectric response in the solid that acts back on the
photoelectron wave packet. We calculated the (wake) potential associated with this photoelectron self-interaction
in terms of bulk and surface plasmon excitations and show that it induces a considerable, XUV-frequency-
dependent temporal shift in laser-streaked XUV photoemission spectra, suggesting the observation of the ultrafast
solid-state dielectric response in contemporary streaked photoemission experiments.
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I. INTRODUCTION

Owing to significant progress in laser technology over
the past decade, subfemtosecond extreme ultraviolet (XUV)
pulses can now be generated and synchronized with a
primary infrared (IR) laser pulse, allowing the time-resolved
observation of the electronic dynamics in atoms [1] and
solids [2]. Time-resolved experiments at the intrinsic time
scales of an active electron and the correlated dynamics of
two electrons [3,4] or plasmons [5,6] promise unprecedented
sensitive experimental tests of collective electronic phenomena
in solids and novel plasmonic devices [7,8] and are relevant
for promoting applications to energy conversion and medicine
within the emerging field of nanoplasmonics [9].

Using attosecond time-resolved XUV + IR pump-probe
technology in a proof-of-principle experiment, a relative tem-
poral shift of 110 as (1 as = 10−18 s) between photoemission
of the 4f core level and conduction-band electrons from a
tungsten (110) surface was recently measured [2]. Essential
for the correct reproduction of this shift within quantum
mechanical models [10,11] is the proper inclusion of (i) the
photoelectron’s (PE’s) phase evolution in the IR laser field
during streaked emission, (ii) the attenuation of the IR pulse
inside the solid (skin effect), and (iii) PE transport effects
in the solid [12,13]. The release and subsequent motion
of the PE in and in front of a solid dielectric medium
provoke collective electron excitations in the solid. These
induced wave-like electron-density fluctuations appear since
the electron distribution in the solid cannot equilibrate during
the motion of the released PE. They depend on the kinetic
energy E of the PE.

For a given dielectric response function ε( �Q,ω) these
induced charge-density fluctuations can be related to a scalar
complex-valued effective potential, the so-called “wake po-
tential,” by solving Poisson’s equation within the specular-
reflection model [14,15]. The real part of the wake potential is
due to virtual bulk and surface excitations, while its imaginary
part accounts for inelastic scattering and energy loss or gain of
the PE. Evaluated at the position of the PE, the wake potential
leads (up to a factor of 1/2) to the self-energy of the PE
[14,16–18]. The self-energy thus amounts to a complex-valued
dynamic image potential that represents the back-interaction of
induced collective bulk and surface excitations of the substrate
on the PE itself. This plasmon-mediated self-image interaction

affects the motion of the PE, in particular, its phase. It therefore
alters relative temporal shifts in photoemission and absolute
photoemission time delays [1,19].

The dependence of the dynamic wake potential on the
charge state and velocity of the wake-inducing particle has
been studied with regard to energy loss [20,21], electron-
exchange and -correlation contributions [22], electron emis-
sion in ion-surface collisions [23], and electronic self-
interaction effects on PE spectra [15]. While these examples
emphasize the influence of the solid’s dielectric response,
they do not resolve the ultrafast electronic response in the
condensed-matter-plus-charged-particle system in time. In this
work we extend previous theoretical studies on the streaked
photoemission from surfaces [10,13,24,25] to expose the effect
of the dynamic plasmon response on time-resolved PE spectra,
suggesting the study of many-body processes in solids in
streaked PE emission experiments [2].

This paper is organized as follows. In Sec. II, we present
the underlying theoretical model to calculate the dynamic
self-image potential of a PE. In this section, we use second-
quantization techniques to account for the creation and destruc-
tion of surface and bulk plasmon modes, closely following
previous theoretical work [15,18,20,22,26]. In Sec. III, we
employ the effective dynamic image potential derived in the
previous section and solve the single-electron time-dependent
Schrödinger equation (TDSE) to obtain IR-streaked XUV
PE spectra from a jellium metal surface. In Sec. IV, we
compare our TDSE results with and without the inclusion of
dynamical plasmon-response effects. Our conclusions follow
in Sec. V. Unless indicated otherwise, we use atomic units
(a.u.) throughout this work.

II. DYNAMIC IMAGE POTENTIAL

The dielectric response of conduction electrons to a released
PE is a complex quantum-mechanical many-body problem
[15]: The dynamic image potential effect on the motion of
PEs is a self-interaction process. The release and motion of a
PE induce a collective response of the substrate’s conduction
electrons that involves the dynamical creation and annihilation
of surface and bulk plasmon modes and electron-hole pairs.
These substrate excitations, in turn, act back on the PE, leading
to an effective “self-interaction” of the released PE that can
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be accounted for by the self-energy �(r). The net effective
potential of a PE at position r is thus given by an effective
single-particle potential,

U (r) = U0(r) + �(r), (1)

where U0(r) is the undisturbed single-particle potential for the
electrons of the solid target. The complex-valued self-energy
� = �r + i�i depends on the characteristics of the released
PE and the electronic properties of the substrate. Its real part
�r models the virtual excitation of electron-hole pairs and
collective electron excitations (plasmons), while its imaginary
part �i accounts for a net energy transfer between the PE
and collective modes of the substrate. Therefore, �i presents
the inelastic scattering of the PE during its propagation to the
detector.

In view of the convoluted nature of this self-interaction
process, the actual calculation of � requests approximations.
In order to calculate the dynamic effective plasmon-response
potential for photoemission from a metal surface, we orient the
z axis of our coordinate system along the surface normal and
toward the vacuum side and assume that the released PE moves
with a constant velocity vz > 0 along a classical trajectory
toward the surface and crosses the metal-vacuum interface at
z = 0 at time t = 0. The classical motion of the PE is thus
given by the charge density ρ(r) = δ(r‖)δ(z − vzt).

Depending on its kinetic energy, there are four possible
processes that contribute to the PE inelastic scattering:
electron-phonon interactions at low energy, electron-electron
interactions (dielectric response), interband transitions, and
secondary core-level photoionization or Auger processes at
high energy [12,13]. In typical streaking experiments, the
kinetic energy of PEs is of the order of 10–100 eV, and inelastic
scattering is mainly due to electron-electron interactions.
An elementary approach to including inelastic interactions
between the PE and the substrate is to add an imaginary part
κ = 1/2λ to the PE momentum, where λ is the PE mean-free
path [10,27]. This is equivalent to assuming a purely imaginary
self-energy,

�(z,vz) ≈ i�ph(z,vz) = −ivz/(2λ)	(−z), (2)

where 	(z) is the unit step function. The nonzero value of λ

implies that only PEs that originate within a distant from the
surface of a few times λ contribute to the photocurrent.

We model the semi-infinite-solid-in-jellium approximation
with the potential

U0(r) = UJ (z) = − V0

1 + ez/a
, (3)

where V0 is the height of the potential step at the metal-vacuum
interface and a defines the thickness of the interface region. We
use the following dielectric function to describe bulk plasmon
and particle-hole excitations [18]:

εB(k,ω) = 1 + ω2
p

3k2
F k2/5 + k4/4 − ω(ω + iγ )

. (4)

It entails the dispersion relation

ω2
k = ω2

p + 3k2
F k2/5 + k4/4. (5)

An approximate expression for the surface dielectric function
could be derived from the bulk dielectric properties [28].
Instead, we adopt the surface-plasmon-pole approximation
of Echenique et al. [26] and model surface-plasmon and
particle-hole excitations with the surface dielectric function
[18]

εS(Q,ω) = 1 + ω2
p

ω2 − ω2
p − αQ − βQ2 − Q4/4

, (6)

which gives the surface plasmon dispersion relation

ω2
Q = ω2

p/2 + αQ + βQ2 + Q4/4. (7)

For low momenta k = (Q,kz), these dispersion relations
model single-plasmon modes with bulk- and surface-plasmon
frequencies ω2

p = 4πn and ωs = ωp/
√

2, respectively. Here
n is the bulk conduction-electron density and kF = (3π2n)1/3

the Fermi velocity. The decay of these modes into particle-hole
pair excitations at high momenta is modeled through the k4

and Q4 terms. The parameter α = √
3kF ωp/

√
10, and β is

determined so that the surface- and bulk-plasmon dispersion
curves join the particle-hole continuum at the same point (same
momentum and energy) [26]. With these approximations, the
plasmon field of the undistorted solid is represented by the free
Hamiltonian

H0 =
∑

Q,kz�0

ωkb
†
kbk +

∑
Q

ωQa
†
QaQ, (8)

where b
(†)
Q and a

(†)
k are annihilation (creation) operators for

bulk and surface plasmons, respectively [15,20,22].
The interaction between the (classical) PE and the solid is

given by the interaction Hamiltonian

H1 =
∫

drρ(r)[φb(r) + φs(r)] (9)

in terms of the bulk- and surface-plasmon fields [15]

φb(r) =
∑

Q,kz�0

Bkbk sin(kzz)eiQ·r‖	(−z) + H.c., (10)

φs(r) =
∑

Q

AQaQe−Q|z|eiQ·r‖ + H.c., (11)

with interaction strengths

|Bk|2 = 8πω2
p/(V k2ωk), (12)

|AQ|2 = πω2
s /(SQωQ), (13)

quantization volume V , and quantization surface S, respec-
tively. The bulk-plasmon field in Eq. (10) vanishes at the
surface and in the vacuum, and the surface-plasmon field is
chosen so that its value inside the solid is a reflection of its
value in the vacuum (specular-reflection model).

The total Hamiltonian

H = H0 + H1 (14)

describes the interaction of the bulk- and surface-plasmon
fields of the substrate with a uniformly moving classical PE.

063403-2



PROBING DIELECTRIC-RESPONSE EFFECTS WITH . . . PHYSICAL REVIEW A 84, 063403 (2011)

A given initial state of the plasmon field, |ψ(−∞)〉, evolves
according to

|ψ(t)〉 = T exp

[
−i

∫ t

−∞
H1,I (t ′)dt ′

]
|ψ(−∞)〉, (15)

where T is the time-ordering operator and

H1,I (t) = eiH0tH1e
−iH0t (16)

is the interaction-picture representation of H1. In our applica-
tion, |ψ(−∞)〉 is given as the vacuum state of the plasmon
field, and its time evolution can be carried out exactly [20,21].

The complex self-energy of the interacting PE can now be
calculated as

�(t,vz) = 1
2 〈ψ(t)|H1,I (t)|ψ(t)〉 = �b(t,vz)+�s(t,vz), (17)

with a bulk contribution �b(t,vz) and a surface contribution
�s(t,vz). Following Refs. [18], [22], and [26] for the special
case of photoemission perpendicular to the surface and using
the conversion t = z/vz, we obtain the bulk contribution to the
self-energy

�b(z,vz) = −2	(−z)

π

∫ ∞

0

dk

k

∫ k

0
dkz

[
1

εB(k,ω = kzvz)
− 1

]

× sin2(kzz) = �b,r + i�b,i , (18)

with the real and imaginary parts

�b,r (z,vz) = 	(−z)ω2
p

π

∫ ∞

0

dk

k

×
∫ k

0
dkz

(
k2
z v

2
z − ω2

k

)
[1 − cos(2kzz)](

k2
z v

2
z − ω2

k

)2 + k2
z v

2
z γ

2
, (19)

�b,i(z,vz) = −	(−z)vzω
2
pγ

π

∫ ∞

0

dk

k

×
∫ k

0
dkz

2kz[1 − cos(2kzz)](
k2
z v

2
z − ω2

k

)2 + k2
z v

2
z γ

2
. (20)

Similarly, the real part of the surface contribution to the self-
energy follows as

�s,r (z,vz) = 1

2

∫ ∞

0
dQ �s(Q,vz)e

−2Q|z|

+	(z)vz

∫ ∞

0

dQQ

ωQ

�s(Q,vz)e
−Qz sin(ωQz/vz)

= −ω2
s

2

∫ ∞

0

dQ

Q2v2
z + ω2

Q

e−2Q|z| − 	(z)vzω
2
s

×
∫ ∞

0

dQ

ωQ

(
Q2v2

z + ω2
Q

)e−Qz sin(ωQz/vz),

(21)

with the definition

�s(Q,vz) = εS(Q,ω = iQvz) − 1

εS(Q,ω = iQvz) + 1
. (22)

However, the specular-reflection method used above does not
provide the imaginary part �s,i(z,vz). Physically, �s,i(z,vz)
represents the rate of creating surface plasmons. Accordingly,

it can be obtained from the energy lost by the PE to surface
excitations, resulting in [26]

�s,i(z,vz) = −vzω
2
s

2

∫ ∞

0

dQQ

ωQ

(
ω2

Q + Q2v2
z

) [	(−z)e−2Q|z|

+	(z){2 cos(ωQz/vz)e
−Qz − e−2Qz}]. (23)

The real part of �(z,vz) converges to the classical self-image
potential �r (z,vz) → −1/4z as z → ∞ for all values of vz

[29,30]. For vz → 0, �(z,vz) approaches the static limit

�(z,vz = 0) = �r (z) =−2	(−z)ω2
p

π

∫ ∞

0

dk

k

∫ k

0
dkz

sin2(kzz)

ω2
k

− ω2
s

2

∫ ∞

0
dQ

e−2Q|z|

ω2
Q

. (24)

We point out that �i(z,vz) is approximately proportional to vz,
consistent with the phenomenological expression in Eq. (2).
The comparison of Eq. (2) with �i(z,vz) = �b,i(z,vz) +
�s,i(z,vz) can thus be used to define an effective, z-dependent
mean-free path λ(z). Since �i(z,vz) vanishes at vz = 0,
�(z,vz = 0) is real, such that UJ (z) + �(z,vz = 0) is, in
jellium approximation, the effective binding potential for
an electron in the metal. Therefore, we need to adjust the
parameters in UJ so that UJ (z) + �(z,vz = 0) gives the correct
Fermi energy.

Figure 1(a) shows �r (z,vz) for different PE velocities vz

for aluminum with ωs = 0.378, ωp = √
2ωs , and γ = 0.1ωp.

We adjust the potential step to V0 = 10.2 eV and the interface-
thickness parameter to a = 1.4 Å, respectively, in order to
reproduce the Fermi energy of aluminum, εF = 11.7 eV
[Fig. 1(b)]. For vz > 0, �r (z,vz) oscillates near the metal
surface with wavelength λb = πvz/ωp inside the solid and
λs = 2πvz/ωs in the vacuum. Our numerical results confirm
that it approaches −1/4z [30] far away from the surface for
all vz, as expected and mentioned above. In the static limit,
indicated as “vz = 0,” �r (z,vz = 0) becomes constant inside

-8
-6
-4
-2
0

Σ r
(z

) 
(e

V
) (a)

vz=0
vz=1.5
vz=2.5

-20
-16
-12
-8
-4
0

-75 -50 -25 0  25  50

U
r(

z)
 (

eV
)

z [a.u.]

(b)

vz=0
vz=1.5
vz=2.5

.

FIG. 1. (Color online) (a) Dynamic wake potential �r (z,vz) for
aluminum for different PE velocities vz. (b) Real part of the potential
U (z,vz) = UJ (z) + �(z,vz). The parameters a and V0 in the jellium
potential UJ [cf. Eq. (2)] are adjusted such that U (z → −∞,vz = 0)
equals the bulk limit εF + W , where εF and W are the Fermi energy
and work function, respectively, for aluminum. The curves shown in
(a) and (b) for vz �= 0 are normalized to the respective vz = 0 bulk
limits.
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the solid and approaches −1/4z for large z on the vacuum
side. The “kink” near z = 0 in the self-energy �(z,vz) arises
since only the continuity of the plasmon field, and not the
continuity of its derivative, is imposed at z = 0 within the
specular-reflection model [15].

III. TIME-DEPENDENT SCHRÖDINGER EQUATION

We model the metal surface as a 300-a.u.-wide slab and
obtain its eigenvectors εn and wave functions �n(z) by
diagonalizing the TDSE

εn�n(z) =
[
−1

2

d2

dz2
+ UJ (z) + �(z,vz = 0)

]
�n(z). (25)

By increasing the slab thickness to 450 a.u., we found that
the numerical results in the following figures in this work
show no discernible change with regard to calculations for the
300-a.u.-wide slab. We represent the vector potential of the
laser pulse as

AL(z,t) = A0 sin2(πt/τL) cos[ωL(t − τL/2)]

× [ez/δL	(−z) + 	(z)] (26)

for 0 � t � τL and 0 otherwise, with h̄ωL = 1.57 eV, peak
intensity IL = A2

0ω
2
L/2 = 5 × 1011W/cm2, and pulse length

τL = 8 fs. We include an exponential damping of the IR laser
field inside the solid with skin depth δL and assume a Gaussian
XUV pulse,

EX(t) = EX,0e
−2 ln 2(t/τX)2

cos(ωXt), (27)

with pulse length τX = 300 as. In typical streaking experi-
ments, the XUV-pulse peak intensity IX = E2

X,0 is sufficiently
low that photoemission in the XUV pulse can be treated
perturbatively.

In order to investigate the influence of the dynamical
plasmon response on photoemission spectra and time delays,
we distinguish the following three cases.

A. Static image potential with phenomelogical
modeling of �i

We describe the release and propagation of the PE wave
packet δψn(z,t) from occupied substrate states ψn(z,t) by
solving the TDSE [11],

i
∂

∂t
δψn(z,t ; τ ) = HL,sta(t)δψn(z,t ; τ )

+ zEX(t + τ )ψn(z,t), (28)

where

HL,sta = 1

2

[
−i

d

dz
+ AL(z,t)

]2

+UJ (z) + �r (z,vz = 0) + i�ph(z,vz) (29)

is the Hamiltonian for the solid slab including the static image
potential in UJ (z) + �r (z,vz = 0) in the presence of the IR-
laser pulse AL(z,t). vz = √

2(ωX − |εn|) is the speed of the
PE. Using �ph(z,vz) from Eq. (2) we include the damping of
the PE and denote the results of this calculation as “static.”

The delay τ between the XUV and the IR pulses is assumed
to be positive if the XUV pulse precedes the IR pulse. The

evolution of the nth initial state below the Fermi surface in the
IR pulse is given by

i
∂

∂t
ψn(z,t) = HL,sta(t)ψn(z,t). (30)

Since EL(X)(t → ±∞) = 0, Eqs. (28) and (30) are solved for
the initial conditions δψn(z,t → −∞; τ ) = 0 and ψn(z,t →
−∞) = �n(z)e−iεnt . This “static” calculation does not include
wake effects that are due to the dielectric response of the
substrate during the motion of the PE in the real part of the
self-energy �(z,vz �= 0). Using results of the static calculation
as a reference will allow us to expose effects due to the dynamic
dielectric response of the substrate on streaked photoemission
spectra (see Sec. IV).

B. Dynamic image potential with phenomelogical
modeling of �i

In order to include the dynamical plasmon response to the
moving PE, we replace the Hamilitonian HL,sta(t) in Eq. (29)
by

HL,dyn−ph = 1

2

[
−i

d

dz
+ AL(z,t)

]2

+UJ (z) + �r (z,vz) + i�ph(z,vz). (31)

We designate the results obtained with this Hamiltonian as
“dynamic-phenomenological” (dyn-ph). As in the previous
subsection, the damping effect of the PE is still described
phenomenologically by �ph(z,vz), but now the effect of
the plasmon dynamics generated by the moving PE (“wake
effect”) is included in the real part of the complex self-energy
�(z,vz). The comparison of this dyn-ph result with the static
result therefore reveals the influence of dynamical response
effects in the substrate charge distribution on the PE. The
evolution of the nth initial state below the Fermi surface in the
IR pulse is still given by Eq. (30).

C. Full dynamic image potential

Including the full complex-valued dynamical image poten-
tial �(z,vz) in the Hamiltonian

HL,dyn = 1

2

[
−i

d

dz
+ AL(z,t)

]2

+ UJ (z) + �(z,vz), (32)

we obtain results that we refer to as “fully dynamic” (dyn).
For each of the three cases distinguished above, we

obtain a corresponding PE wave packet δψn(z,t ; τ ). Assuming
free-electron dispersion, E = k2/2, the energy-differential
photoemission probability

P (E,τ ) =
∑

εn<εF

|δψ̃n(k,τ )|2 (33)

leads to the delay-dependent center of energy (COE) of the PE
spectrum,

ECOE(τ ) = 1

2Ptot(τ )

∑
εn<εF

∫
dk|k δψ̃n(k,τ )|2, (34)
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FIG. 2. (Color online) Streaked PE spectra for an aluminum
surface calculated with (a) the dynamic image potential and (b) the
static image potential for h̄ωX = 40 eV, δL = 0, and the PE mean-free
path λ = 5 Å. (c) Corresponding centers of energy ECOE. The relative
temporal shift between the streaking traces for dynamic and static
image potentials amounts to 100 as.

where δψ̃n(k,τ ) is the Fourier transform of δψn(z,t → ∞; τ )
and

Ptot(τ ) =
∑

εn<εF

∫
dk|δψ̃n(k,τ )|2 (35)

is the total emission probability. We define temporal shifts
�τ for static (dynamic) calculations relative to AL by fitting
[10,11]

ECOE(τ ) = a + bAL(τ − �τ ). (36)

IV. RESULTS

We first present results for δL = 0 for which the IR field is
completely screened inside the solid. In Fig. 2 we compare
the static and dynamic (dyn-ph) streaked PE spectra and
their centers of energies for h̄ωX = 40 eV. We determine the
corresponding temporal shifts τsta(dyn−ph) according to Eq. (36).
Figure 2(c) shows the relative temporal shift �τwake =
�τdyn−ph − �τsta ≈ 100 as, suggesting a noticeable—on the
scale of the temporal resolution achievable in measured
streaked PE spectra—contribution of the dynamical plasmon
response to the photoemission delay.

Our results for �τdyn−ph and �τsta as a function of
h̄ωX between 30 and 100 eV shown in Fig. 3(a) reveal
that the dynamical plasmon response in the substrate has a
significant effect on the PE delay, especially for h̄ωX < 50 eV,
where �τdyn−ph develops a double-hump structure. The ωX

dependence of �τwake can be understood as a result of the
scattering of PEs in the self-interaction potential �r (z,vz). This
interaction of the PE changes the phase of δψn(z,t), giving rise
to a “Wigner delay” �τW [19,31].

Not including the effect of the streaking IR-laser field, we
determine the Wigner delays �τW

sta(dyn−ph) from the PE position

〈z〉 =
∫

dkz|δψn(z,t)|2 (37)

and velocity

〈v〉 =
∫

dk|kδψn(k,t)|2 (38)
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FIG. 3. (Color online) (a) �τwake = �τdyn−ph − �τsta and �τsta

as functions of the XUV frequency obtained by fitting Eq. (36) to
the calculated ECOE(τ ), including all levels below the Fermi surface
and for the IR skin depth δL = 0. (b) Comparison of �τwake, obtained
from ECOE(τ ) for the emission of PEs from the Fermi surface, with
the Wigner delay �τW

wake. (c) �τwake at different IR penetration depths.

at a time t � τL according to

〈z〉 = 〈v〉(t − �τW ). (39)

In support of this “scattering interpretation,” Fig. 3(b)
shows excellent agreement of the streaking delay �τwake with
�τW

wake = �τW
dyn−ph − �τW

sta for photoemission from the Fermi
level. We found equally good agreement for emission from
individual initial conduction-band states below the Fermi level.
For this comparison, we assumed in our streaking calculation
that the IR field does not penetrate the solid (δL = 0). A
detailed discussion of the relation between the Wigner and
the streaking delay can be found in Ref. [19].
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FIG. 4. (Color online) Relative delay �τwake as a function of the
XUV frequency for δL = 0 at different (a) PE mean-free paths λ and
(b) surface-plasmon frequencies.
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FIG. 5. (Color online) Comparison of the relative delay �τwake as
a function of the XUV frequency obtained with �r + �ph and � for
the skin depth δL = 0.

The effect of the actual IR-skin depth on streaked PE
spectra from surfaces is currently debated [2,10,13,24,25]. We
therefore found it compelling to study the influence of δL on
�τwake. Our numerical results in Fig. 3(c) show that �τwake

is strongly affected by changes in the IR-skin depth if δL is
smaller than a few mean-free paths λ. Since contributions to
the emitted photocurrent are limited to PEs that are released
within a few λ from the surface, one would expect �τwake to
be less sensitive to δL for δL � 2λ and to stabilize in the limit
δL → ∞, in agreement with our numerical results.

Figure 4 shows the dependence of �τwake on the PE
mean-free path and the surface-plasmon frequency for δL =
0. Increasing λ by a factor of 2 significantly increases
�τwake for h̄ωX � 50 eV but has little influence at larger ωX

[Fig. 4(a)]. Our result that, in general, �τwake(2λ) �= �τwake(λ)
is incompatible with the interpretation [2,25] of the relative
delay between photoemission from core and conduction-band
levels in tungsten in terms of the PE’s average travel time
in the solid (≈λ/〈v〉). Decreasing ωs shifts the double-hump
structure to the lower ωX and thus to lower kinetic energies of
the PEs, as expected in view of the decreased thresholds for
surface and bulk plasmon excitation [Fig. 4(b)].

In Fig. 5 we compare �τwake obtained for δL = 0 with
either �r + �ph [cf. Eq. (31)] or � [cf. Eq. (32)]. These
results show that the imaginary part of the self-energy �i(z,vz)
is reasonably well represented by the phenomenological
potential �ph(z,vz) for λ = 5 Å, while noticeable differences
between the calculations with the phenomenological and the

full imaginary part of the PE self-energy occur near h̄ωX = 37
and 49 eV.

V. CONCLUSION

We have calculated the self-energy of a PE that is released
from an aluminum surface by an attosecond XUV pulse. By
comparing COEs and photoemission delays in IR-streaked PE
spectra, including the dynamic electronic self-image potential,
with calculations performed in the static limit, we find a
significant contribution to the temporal shift �τwake in the
photoemission from the metal conduction band. This shift
is due to the excitation of bulk and surface plasmons in
the metal during and after photoemission and is found to
sensitively depend on the XUV frequency as well as on
solid-state characteristics, such as the bulk- and surface-
plasmon frequencies, the IR skin depth, and the PE transport
in the solid. The measurement of streaked electron spectra
from dielectric solids may thus be applied to probe solid-
state properties—in particular, the solid’s ultrafast dielectric
response to a moving charge—with unprecedented accuracy.
This is supported by our quantitative prediction that wake-
induced delays will exceed 50 as. Such time delays can be
resolved with contemporary laser technology [1].

The quantitative modeling of time-resolved electron emis-
sion from metal surfaces requires a number of approximations
that need to be scrutinized, in particular, with regard to the
three points mentioned in the second paragraph of Sec. I.
We believe that this work provides a viable framework for
the future addition of effects that have not been addressed
and the removal of some model assumptions we have used.
This includes the scrutiny of recoil effects [32] during
the propagation of PEs in a solid and nonlocal effects in
the electronic self-interaction. We hope that experimental
results will soon become available that allow for tests of the
simulations presented in this work and serve as a guide to
the improved modeling of collective (electronic) excitations in
attosecond time-resolved photoemission.

ACKNOWLEDGMENTS

This work was supported by the NSF and the Division of
Chemical Sciences, Office of Basic Energy Sciences, Office
of Energy Research, US Department of Energy. Numerical
computations were performed on the Beocat cluster at Kansas
State University.

[1] M. Schultze et al., Science 328, 1658 (2010).
[2] A. L. Cavalieri et al., Nature 449, 1029 (2007).
[3] M. Drescher et al., Nature 419, 803 (2002).
[4] L. Miaja-Avila et al., Phys. Rev. Lett. 101, 046101 (2008).
[5] A. Kubo et al., Nano Lett. 5, 1123 (2005).
[6] M. I. Stockman et al., Nature Phot. 1, 539 (2007).
[7] M. Sukharev and T. Seideman, Nano Lett. 6, 1123 (2006).
[8] F. Le et al., Phys. Rev. B 76, 165410 (2007); F. Hao et al., ibid.

76, 165410 (2007).
[9] M. I. Stockman, Phys. Today 64, 39 (2011).

[10] C.-H. Zhang and U. Thumm, Phys. Rev. Lett. 102, 123601
(2009).

[11] C.-H. Zhang and U. Thumm, Phys. Rev. A 82, 043405 (2010).
[12] E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal,

V. M. Silkin, V. P. Zhukov, and P. M. Echenique, Chem. Rev.
106, 4160 (2006).

[13] C. Lemell, B. Solleder, K. Tökési, and J. Burgdörfer, Phys. Rev.
A 79, 062901 (2009).

[14] P. M. Echenique, F. Flores, and R. H. Ritchie, Solid State Phys.
43, 229 (1990).

063403-6

http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1038/nature06229
http://dx.doi.org/10.1038/nature01143
http://dx.doi.org/10.1103/PhysRevLett.101.046101
http://dx.doi.org/10.1021/nl0506655
http://dx.doi.org/10.1038/nphoton.2007.169
http://dx.doi.org/10.1021/nl0524896
http://dx.doi.org/10.1103/PhysRevB.76.165410
http://dx.doi.org/10.1103/PhysRevB.76.165410
http://dx.doi.org/10.1103/PhysRevB.76.165410
http://dx.doi.org/10.1063/1.3554315
http://dx.doi.org/10.1103/PhysRevLett.102.123601
http://dx.doi.org/10.1103/PhysRevLett.102.123601
http://dx.doi.org/10.1103/PhysRevA.82.043405
http://dx.doi.org/10.1021/cr050166o
http://dx.doi.org/10.1021/cr050166o
http://dx.doi.org/10.1103/PhysRevA.79.062901
http://dx.doi.org/10.1103/PhysRevA.79.062901
http://dx.doi.org/10.1016/S0081-1947(08)60325-2
http://dx.doi.org/10.1016/S0081-1947(08)60325-2


PROBING DIELECTRIC-RESPONSE EFFECTS WITH . . . PHYSICAL REVIEW A 84, 063403 (2011)

[15] J. I. Gersten and N. Tzoar, Phys. Rev. B 8, 5671 (1973); N. Tzoar
and J. I. Gersten, ibid. 8, 5684 (1973).

[16] J. Harris and R. O. Jones, J. Phys. C 6, 3585 (1973).
[17] J. R. Manson and R. H. Ritchie, Phys. Rev. B 24, 4867 (1981).
[18] F. J. Garcı́a de Abajo and P. M. Echenique, Phys. Rev. B 46,

2663 (1992); 48, 13399 (1993).
[19] C.-H. Zhang and U. Thumm, Phys. Rev. A 84, 033401 (2011).
[20] A. A. Lucas, E. Karthueser, and R. C. Badro, Phys. Rev. B 2,

2488 (1970).
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