967 research outputs found

    1861-09-30 E.H. Goodale writes to Adjutant General Hodsdon about cavalry band

    Get PDF
    https://digitalmaine.com/cw_me_2nd_regiment_corr/1156/thumbnail.jp

    High accuracy binary black hole simulations with an extended wave zone

    Get PDF
    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalised coordinates, and allowing the spacetime to be covered with multiple communicating non-singular coordinate patches. Here we consider a regular Cartesian near zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test-case of the inspiral of an equal-mass non-spinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞r\to\infty throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)(\ell,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10−6M_{\rm irr} = 0.884355\pm20\times10^{-6} and spin $S_f/M_f^2 = 0.686923 \pm 10\times10^{-6}

    High efficiency thermionic converter studies

    Get PDF
    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion

    Eastern Temperate Forests

    Get PDF
    Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This broad range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees. The critical loads approach is an ecosystem assessment tool with great potential to simplify complex scientii c information and effectively communicate with the policy community and the public. This synthesis represents the i rst comprehensive assessment of empirical critical loads of N for ecoregions across the United States

    Introduction to dynamical horizons in numerical relativity

    Full text link
    This paper presents a quasi-local method of studying the physics of dynamical black holes in numerical simulations. This is done within the dynamical horizon framework, which extends the earlier work on isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of marginal surfaces and study their time evolution. An important ingredient is the calculation of the signature of the horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calculation of the black hole mass and angular momentum, which were previously defined for axisymmetric isolated horizons to dynamical situations. (iii) We calculate the source multipole moments of the black hole which can be used to verify that the black hole settles down to a Kerr solution. (iv) We also study the fluxes of energy crossing the horizon, which describes how a black hole grows as it accretes matter and/or radiation. We describe our numerical implementation of these concepts and apply them to three specific test cases, namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a neutron star, and a non-axisymmetric black hole collision with non-zero initial orbital angular momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic content shortene

    Binary neutron-star mergers with Whisky and SACRA: First quantitative comparison of results from independent general-relativistic hydrodynamics codes

    Full text link
    We present the first quantitative comparison of two independent general-relativistic hydrodynamics codes, the Whisky code and the SACRA code. We compare the output of simulations starting from the same initial data and carried out with the configuration (numerical methods, grid setup, resolution, gauges) which for each code has been found to give consistent and sufficiently accurate results, in particular in terms of cleanness of gravitational waveforms. We focus on the quantities that should be conserved during the evolution (rest mass, total mass energy, and total angular momentum) and on the gravitational-wave amplitude and frequency. We find that the results produced by the two codes agree at a reasonable level, with variations in the different quantities but always at better than about 10%.Comment: Published on Phys. Rev.

    Numerical simulations with a first order BSSN formulation of Einstein's field equations

    Get PDF
    We present a new fully first order strongly hyperbolic representation of the BSSN formulation of Einstein's equations with optional constraint damping terms. We describe the characteristic fields of the system, discuss its hyperbolicity properties, and present two numerical implementations and simulations: one using finite differences, adaptive mesh refinement and in particular binary black holes, and another one using the discontinuous Galerkin method in spherical symmetry. The results of this paper constitute a first step in an effort to combine the robustness of BSSN evolutions with very high accuracy numerical techniques, such as spectral collocation multi-domain or discontinuous Galerkin methods.Comment: To appear in Physical Review

    Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals

    Get PDF
    This is the final version of the article. It first appeared from Frontiers Media via http://dx.doi.org/10.3389/fpsyg.2015.01203Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests.We are grateful to Lorna Jakobson, A. David Milner, Irene Logan, John Orphan, Phil Surette, and Jim Urqhuart for expert technical assistance. Leah T. Johnstone and two anonymous referees provided detailed comments on this manuscript. This research was supported by Medical Research Council of Canada Grant MA-7269 to MG and a Wellcome Trust Travel Grant to DC

    Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals.

    Get PDF
    Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests

    Numerical relativity with characteristic evolution, using six angular patches

    Get PDF
    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue
    • …
    corecore