936 research outputs found
Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA
Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 μM] and neutral (K D of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa
Physics on the edge: contour dynamics, waves and solitons in the quantum Hall effect
We present a theoretical study of the excitations on the edge of a
two-dimensional electron system in a perpendicular magnetic field in terms of a
contour dynamics formalism. In particular, we focus on edge excitations in the
quantum Hall effect. Beyond the usual linear approximation, a non-linear
analysis of the shape deformations of an incompressible droplet yields soliton
solutions which correspond to shapes that propagate without distortion. A
perturbative analysis is used and the results are compared to analogous
systems, like vortex patches in ideal hydrodynamics. Under a local induction
approximation we find that the contour dynamics is described by a non-linear
partial differential equation for the curvature: the modified Korteweg-de Vries
equation.
PACS number(s): 73.40.Hm, 02.40.Ma, 03.40.Gc, 11.10.LmComment: 15 pages, 12 embedded figures, submitted to Phys. Rev.
Expanding Stereochemical and Skeletal Diversity Using Petasis Reactions and 1,3-Dipolar Cycloadditions
A short and modular synthetic pathway using intramolecular 1,3-dipolar cycloaddition reactions and yielding functionalized isoxazoles, isoxazolines, and isoxazolidines is described. The change in shape of previous compounds and those in this study is quantified and compared using principal moment-of-inertia shape analysis.Chemistry and Chemical Biolog
Introduction of a C-terminal hexa-lysine tag increases thermal stability of the LacDiNac binding adhesin (LabA) exodomain from Helicobacter pylori
Helicobacter pylori is a pathogenic microorganism infecting approximately 50% of the global population, and establishes life-long colonization despite the hostile stomach environment. H. pylori employs a wide range of outer membrane proteins (adhesins) for epithelial attachment, which specifically bind to glycans or non-carbohydrate structures expressed on the gastric epithelium. A recently described adhesin from H. pylori is LabA, named after its ability to bind to a disaccharide present in gastric mucus (LacdiNAc-specific adhesin). Here, we describe the recombinant expression of LabA from H. pylori strains J99 and 26695 in E. coli. High yields of recombinant LabA were obtained using periplasmic expression. We found that the addition of a C-terminal hexalysine (6K) tag enhanced the thermal stability of LabA without affecting its secondary structure, using differential scanning fluorimetry and circular dichroism spectroscopy. In contrast to our previous report for another H. pylori adhesin (BabA), the 6K tag did not enhance recombinant protein yield or solubility. Both versions of LabA, with or without the 6K tag, were expressed and isolated from the periplasmic space of Escherichia coli, with a surprisingly high yield of at least 40 mg/L for each independent preparation, following a two-step purification protocol. The proteins were analyzed with mass spectrometry (MS). Unlike its reported effect on stability of BabA, the 6K tag did not appear to protect the N-term of recombinant LabA from partial periplasmic degradation
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana
nature of the neutrino and could provide information on the absolute scale of
the neutrino mass. The initial phase of the Majorana experiment, known as the
Demonstrator, will house 40 kg of Ge in an ultra-low background shielded
environment at the 4850' level of the Sanford Underground Laboratory in Lead,
SD. The objective of the Demonstrator is to determine whether a future 1-tonne
experiment can achieve a background goal of one count per tonne-year in a
narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear
Physic
The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76
The observation of neutrinoless double-beta decay would determine whether the
neutrino is a Majorana particle and provide information on the absolute scale
of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR,
an array of germanium detectors, to search for neutrinoless double-beta decay
of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be
enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in
an ultra-low-background shielded environment. Operation of the DEMONSTRATOR
aims to determine whether a future tonne-scale germanium experiment can achieve
a background goal of one count per tonne-year in a 4-keV region of interest
around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.Comment: Submitted to AIP Conference Proceedings, 19th Particles & Nuclei
International Conference (PANIC 2011), Massachusetts Institute of Technology,
Cambridge, MA, USA, July 24-29, 2011; 3 pages, 1 figur
Observation of Coherent Elastic Neutrino-Nucleus Scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection
for four decades, even though its predicted cross-section is the largest by far
of all low-energy neutrino couplings. This mode of interaction provides new
opportunities to study neutrino properties, and leads to a miniaturization of
detector size, with potential technological applications. We observe this
process at a 6.7-sigma confidence level, using a low-background, 14.6-kg
CsI[Na] scintillator exposed to the neutrino emissions from the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic
signatures in energy and time, predicted by the Standard Model for this
process, are observed in high signal-to-background conditions. Improved
constraints on non-standard neutrino interactions with quarks are derived from
this initial dataset
- …