273 research outputs found

    Detection of OD towards the low-mass protostar IRAS16293-2422

    Full text link
    Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical network, is a promising way to infer its chemical origin. We aim at understanding the formation mechanisms of water by investigating the origin of its deuterium fractionation. This can be achieved by observing the abundance of OD towards the low-mass protostar IRAS16293-2422, where the HDO distribution is already known. Using the GREAT receiver on board SOFIA, we observed the ground-state OD transition at 1391.5 GHz towards the low-mass protostar IRAS16293-2422. We also present the detection of the HDO 111-000 line using the APEX telescope. We compare the OD/HDO abundance ratio inferred from these observations with the predictions of chemical models. The OD line is detected in absorption towards the source continuum. This is the first detection of OD outside the solar system. The SOFIA observation, coupled to the observation of the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~ 17-90 in the gas where the absorption takes place. This value is fairly high compared with model predictions. This may be reconciled if reprocessing in the gas by means of the dissociative recombination of H2DO+ further fractionates OH with respect to water. The present observation demonstrates the capability of the SOFIA/GREAT instrument to detect the ground transition of OD towards star-forming regions in a frequency range that was not accessible before. Dissociative recombination of H2DO+ may play an important role in setting a high OD abundance. Measuring the branching ratios of this reaction in the laboratory will be of great value for chemical models.Comment: 6 pages, 6 figures, 3 tables, accepted for publication in A&A SOFIA/GREAT special issu

    The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12

    Full text link
    With new THz maps that cover an area of ~3.3x2.1 pc^2 we probe the spatial distribution and association of the ionized, neutral and molecular gas components in the M17 SW nebula. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain a 5'.7x3'.7 map of the 12CO J=13-12 transition and the [C II] 158 um fine-structure line in M17 SW and compare the spectroscopically resolved maps with corresponding ground-based data for low- and mid-J CO and [C I] emission. For the first time SOFIA/GREAT allow us to compare velocity-resolved [C II] emission maps with molecular tracers. We see a large part of the [C II] emission, both spatially and in velocity, that is completely non-associated with the other tracers of photon-dominated regions (PDR). Only particular narrow channel maps of the velocity-resolved [C II] spectra show a correlation between the different gas components, which is not seen at all in the integrated intensity maps. These show different morphology in all lines but give hardly any information on the origin of the emission. The [C II] 158 um emission extends for more than 2 pc into the M17 SW molecular cloud and its line profile covers a broader velocity range than the 12CO J=13-12 and [C I] emissions, which we interpret as several clumps and layers of ionized carbon gas within the telescope beam. The high-J CO emission emerges from a dense region between the ionized and neutral carbon emissions, indicating the presence of high-density clumps that allow the fast formation of hot CO in the irradiated complex structure of M17 SW. The [C II] observations in the southern PDR cannot be explained with stratified nor clumpy PDR models.Comment: 4 pages, 4 figures, letter accepted for the SOFIA/GREAT A&A 2012 special issu

    Detection of interstellar hydrogen peroxide

    Get PDF
    The molecular species hydrogen peroxide, HOOH, is likely to be a key ingredient in the oxygen and water chemistry in the interstellar medium. Our aim with this investigation is to determine how abundant HOOH is in the cloud core {\rho} Oph A. By observing several transitions of HOOH in the (sub)millimeter regime we seek to identify the molecule and also to determine the excitation conditions through a multilevel excitation analysis. We have detected three spectral lines toward the SM1 position of {\rho} Oph A at velocity-corrected frequencies that coincide very closely with those measured from laboratory spectroscopy of HOOH. A fourth line was detected at the 4{\sigma} level. We also found through mapping observations that the HOOH emission extends (about 0.05 pc) over the densest part of the {\rho} Oph A cloud core. We derive an abundance of HOOH relative to that of H_2 in the SM1 core of about 1\times10^(-10). To our knowledge, this is the first reported detection of HOOH in the interstellar medium.Comment: 5 pages, 4 figures, accepted for publication in Astronomy & Astrophysics, new version corrects a typo in Table 1 (and consequently in Fig 4

    ATLASGAL-selected massive clumps in the inner Galaxy: I. CO depletion and isotopic ratios

    Full text link
    In the low-mass regime, it is found that the gas-phase abundances of C-bearing molecules in cold starless cores rapidly decrease with increasing density, as the molecules form mantles on dust grains. We study CO depletion in 102 massive clumps selected from the ATLASGAL 870 micron survey, and investigate its correlation with evolutionary stage and with the physical parameters of the sources. Moreover, we study the gradients in [12C]/[13C] and [18O]/[17O] isotopic ratios across the inner Galaxy, and the virial stability of the clumps. We use low-J emission lines of CO isotopologues and the dust continuum emission to infer the depletion factor fD. RATRAN one-dimensional models were also used to determine fD and to investigate the presence of depletion above a density threshold. The isotopic ratios and optical depth were derived with a Bayesian approach. We find a significant number of clumps with a large fD, up to ~20. Larger values are found for colder clumps, thus for earlier evolutionary phases. For massive clumps in the earliest stages of evolution we estimate the radius of the region where CO depletion is important to be a few tenths of a pc. Clumps are found with total masses derived from dust continuum emission up to ~20 times higher than the virial mass, especially among the less evolved sources. These large values may in part be explained by the presence of depletion: if the CO emission comes mainly from the low-density outer layers, the molecules may be subthermally excited, leading to an overestimate of the dust masses. CO depletion in high-mass clumps seems to behave as in the low-mass regime, with less evolved clumps showing larger values for the depletion than their more evolved counterparts, and increasing for denser sources. The C and O isotopic ratios are consistent with previous determinations, and show a large intrinsic scatter.Comment: 20 pages, 17 figures, 38 pages of online material (tables and figures

    First astronomical detection of the CF+ ion

    Full text link
    We report the first astronomical detection of the CF+ (fluoromethylidynium) ion obtained by recent observations of its J = 1 - 0 (102.6 GHz), J = 2 - 1 (205.2 GHz), and J = 3 - 2 (307.7 GHz) pure rotational emissions toward the Orion Bar. Our search for CF+, carried out using the IRAM 30m and APEX 12m telescopes, was motivated by recent theoretical models that predict CF+ abundances of a few x E-10 in UV-irradiated molecular regions where C+ is present. The measurements confirm the predictions. They provide support for our current theories of interstellar fluorine chemistry, which suggest that hydrogen fluoride should be ubiquitous in interstellar gas clouds.Comment: 2 pages, 1 figure (uses iaus.sty), to appear in IAU Symposium No. 231, Astrochemistry - Recent Successes and Current Challenges, eds. D. C. Lis, G. A. Blake & E. Herbst (Cambridge Univ. Press

    Disentangling the excitation conditions of the dense gas in M17 SW

    Get PDF
    We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO+^+ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the J=1615J=16-15, J=1211J=12-11, and J=1110J=11-10 transitions of 12^{12}CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-JJ CO, HCN and HCO+^+ emission lines, including maps of the HCN J=87J=8-7 and HCO+^+ J=98J=9-8 transitions. The excitation conditions of 12^{12}CO, HCO+^+ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO+^+ molecules toward M17 SW. The LSED shape, particularly the high-JJ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions. The critical magnetic field criterion implies that the cold cloudlets at two positions are partially controlled by processes that create and dissipate internal motions. Supersonic but sub-Alfv\'enic velocities in the cold component at most selected positions indicates that internal motions are likely MHD waves. Magnetic pressure dominates thermal pressure in both gas components at all selected positions, assuming random orientation of the magnetic field. The magnetic pressure of a constant magnetic field throughout all the gas phases can support the total internal pressure of the cold components, but it cannot support the internal pressure of the warm components. If the magnetic field scales as Bn2/3B \propto n^{2/3}, then the evolution of the cold cloudlets at two selected positions, and the warm cloudlets at all selected positions, will be determined by ambipolar diffusion.Comment: 26 pages, 13 figures, A&A accepte

    Identifikacija biološki nerazgradivih zagađivača u riječnoj vodi

    Get PDF
    Over 100 non-biodegradable organic compounds, accumulated on a carbon filter of a Rhine waterworks, were isolated and identified by means of combined gas chromatography - mass spectrometry. The identified pollutants belong to five different classes: aliphatic as well as aromatic chlorinated hidrocarbons, nitro aromatic compounds, aromatic ethers, tert-butyl substituted phenols and phthalic acid esters. The potential toxicological hazard of the non-biodegradable organic compounds is briefly discussed.Biološki nerazgradivi organski spojevi djeluju nepovoljno na kvalitetu riječne vode koja služi za ljudsku upotrebu i prouzrokuju sekundarne efekte utječući na ekologiju rijeke. Ti se biološki nerazgradivi organski spojevi nakupljaju na ugljenim filtrima vodovoda. Za identifikaciju biološki nerazgradivih organskih spojeva, uzorak ugljenog filtra njemačkog vodovoda s donjeg toka rijeke Rajne, ekstrahiran je s organskim otapalima. Ekstrakti su separirani kromatografskim tehnikama te identificirani pomoću spektrometra masa vezanog uz plinski kromatograf. Neovisno o tome spojevi su identificirani mjerenjem vremena zadržavanja te pomoću infracrvene spektroskopije nakon hvatanja uzorka s maksimuma. Identificirane je više od 100 organskih spojeva. Većina pripada klasama kloriranih alifatskih i aromatskih ugljikovodika, aromatskih nitrospojeva i terc-butil supstituiranih aromatskih ugljikovodika

    APECS - The Atacama Pathfinder Experiment Control System

    Get PDF
    APECS is the distributed control system of the new Atacama Pathfinder EXperiment (APEX) telescope located on the Llano de Chajnantor at an altitude of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama Large Millimeter Array (ALMA) software and employs a modern, object-oriented design using the Common Object Request Broker Architecture (CORBA) as the middleware. New generic device interfaces simplify adding instruments to the control system. The Python based observer command scripting language allows using many existing software libraries and facilitates creating more complex observing modes. A new self-descriptive raw data format (Multi-Beam FITS or MBFITS) has been defined to store the multi-beam, multi-frequency data. APECS provides an online pipeline for initial calibration, observer feedback and a quick-look display. APECS is being used for regular science observations in local and remote mode since August 2005.Comment: 4 pages, A&A, accepte
    corecore