Although water is an essential and widespread molecule in star-forming
regions, its chemical formation pathways are still not very well constrained.
Observing the level of deuterium fractionation of OH, a radical involved in the
water chemical network, is a promising way to infer its chemical origin. We aim
at understanding the formation mechanisms of water by investigating the origin
of its deuterium fractionation. This can be achieved by observing the abundance
of OD towards the low-mass protostar IRAS16293-2422, where the HDO distribution
is already known. Using the GREAT receiver on board SOFIA, we observed the
ground-state OD transition at 1391.5 GHz towards the low-mass protostar
IRAS16293-2422. We also present the detection of the HDO 111-000 line using the
APEX telescope. We compare the OD/HDO abundance ratio inferred from these
observations with the predictions of chemical models. The OD line is detected
in absorption towards the source continuum. This is the first detection of OD
outside the solar system. The SOFIA observation, coupled to the observation of
the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~
17-90 in the gas where the absorption takes place. This value is fairly high
compared with model predictions. This may be reconciled if reprocessing in the
gas by means of the dissociative recombination of H2DO+ further fractionates OH
with respect to water. The present observation demonstrates the capability of
the SOFIA/GREAT instrument to detect the ground transition of OD towards
star-forming regions in a frequency range that was not accessible before.
Dissociative recombination of H2DO+ may play an important role in setting a
high OD abundance. Measuring the branching ratios of this reaction in the
laboratory will be of great value for chemical models.Comment: 6 pages, 6 figures, 3 tables, accepted for publication in A&A
SOFIA/GREAT special issu