198 research outputs found
Extracting the rp-process from X-ray burst light curves
The light curves of type I X-ray bursts (XRBs) result from energy released
from the atmosphere of a neutron star when accreted hydrogen and helium ignite
and burn explosively via the rp-process. Since charged particle reaction rates
are both density and very temperature dependent, a simulation model must
provide accurate values of these variables to predict the reaction flow. This
paper uses a self-consistent one-dimensional model calculation with a constant
accretion rate of dM/dt=5e16g/s (0.045 Eddington) and reports on the detailed
rp-process reaction flow of a given burst.Comment: 4 pages, submitted to Nucl. Phys. A as part of the Nuclei in Cosmos 8
proceeding
Search for Important Weak Interaction Nuclei in Presupernova Evolution
A search is made for the most important electron captures and beta-decays after core silicon buring in massive stars. A nuclear statistical equilibrium code is used to compute isotopic abundances. Electron capture and beta-decay rates are estimated for the 150 most abundant istopes in a simplifiec fashion which generally includes the strongest transitions. These estimates are made for nuclei in the fp-shell and use techniques similar to Fuller, Fowler, & Newman (1982a), and are compared to them. The general behaviour of Y is examined. These methods are then used to follow a typical stellar trajectory, seeking the most important weak interactions during the formation of the iron core. Ranked lists of nuclei are given, to prioritize more detailed studies of individual nuclei. Beta-decays are found to be an important modification to the evolution below Y = 0.4 as the core approaches a state dynamic equilibrium between electron captures and beta-decays
Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects
We present numerical calculations of the equation of state for dense matter
in high magnetic fields, using a temperature dependent Thomas-Fermi theory with
a magnetic field that takes all Landau levels into account. Free energies for
atoms and matter are also calculated as well as profiles of the electron
density as a function of distance from the atomic nucleus for representative
values of the magnetic field strength, total matter density, and temperature.
The Landau shell structure, which is so prominent in cold dense matter in high
magnetic fields, is still clearly present at finite temperature as long as it
is less than approximately one tenth of the cyclotron energy. This structure is
reflected in an oscillatory behaviour of the equation of state and other
thermodynamic properties of dense matter and hence also in profiles of the
density and pressure as functions of depth in the surface layers of magnetic
neutron stars. These oscillations are completely smoothed out by thermal
effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap
The Equation of State of Neutron-Star Matter in Strong Magnetic Fields
We study the effects of very strong magnetic fields on the equation of state
(EOS) in multicomponent, interacting matter by developing a covariant
description for the inclusion of the anomalous magnetic moments of nucleons.
For the description of neutron star matter, we employ a field-theoretical
approach which permits the study of several models which differ in their
behavior at high density. Effects of Landau quantization in ultra-strong
magnetic fields ( Gauss) lead to a reduction in the electron
chemical potential and a substantial increase in the proton fraction. We find
the generic result for Gauss that the softening of the EOS caused
by Landau quantization is overwhelmed by stiffening due to the incorporation of
the anomalous magnetic moments of the nucleons. In addition, the neutrons
become completely spin polarized. The inclusion of ultra-strong magnetic fields
leads to a dramatic increase in the proton fraction, with consequences for the
direct Urca process and neutron star cooling. The magnetization of the matter
never appears to become very large, as the value of never deviates from
unity by more than a few percent. Our findings have implications for the
structure of neutron stars in the presence of large frozen-in magnetic fields.Comment: 40 pages, 7 figures, accepted for publication in Ap
Correlation energy of an electron gas in strong magnetic fields at high densities
The high-density electron gas in a strong magnetic field B and at zero
temperature is investigated. The quantum strong-field limit is considered in
which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to
the Gell-Mann Brueckner expression of the ground-state energy of the field-free
electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2)
(B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner
parameter r_s. The perturbation series is given exactly up to o(r_B) for the
case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.
Poisson -- Boltzmann Brownian Dynamics of Charged Colloids in Suspension
We describe a method to simulate the dynamics of charged colloidal particles
suspended in a liquid containing dissociated ions and salt ions. Regimes of
prime current interest are those of large volume fraction of colloids, highly
charged particles and low salt concentrations. A description which is tractable
under these conditions is obtained by treating the small dissociated and salt
ions as continuous fields, while keeping the colloidal macroions as discrete
particles. For each spatial configuration of the macroions, the electrostatic
potential arising from all charges in the system is determined by solving the
nonlinear Poisson--Boltzmann equation. From the electrostatic potential, the
forces acting on the macroions are calculated and used in a Brownian dynamics
simulation to obtain the motion of the latter. The method is validated by
comparison to known results in a parameter regime where the effective
interaction between the macroions is of a pairwise Yukawa form
Three-Particle Correlations in Simple Liquids
We use video microscopy to follow the phase-space trajectory of a
two-dimensional colloidal model liquid and calculate three-point correlation
functions from the measured particle configurations. Approaching the
fluid-solid transition by increasing the strength of the pair-interaction
potential, one observes the gradual formation of a crystal-like local order due
to triplet correlations, while being still deep inside the fluid phase.
Furthermore, we show that in a strongly interacting system the Born-Green
equation can be satisfied only with the full triplet correlation function but
not with three-body distribution functions obtained from superposing
pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and
two new paragraphs have been adde
The Ground States of Large Quantum Dots in Magnetic Fields
The quantum mechanical ground state of a 2D -electron system in a
confining potential ( is a coupling constant) and a homogeneous
magnetic field is studied in the high density limit , with fixed. It is proved that the ground state energy and
electronic density can be computed {\it exactly} in this limit by minimizing
simple functionals of the density. There are three such functionals depending
on the way varies as : A 2D Thomas-Fermi (TF) theory applies
in the case ; if the correct limit theory
is a modified -dependent TF model, and the case is described
by a ``classical'' continuum electrostatic theory. For homogeneous potentials
this last model describes also the weak coupling limit for arbitrary
. Important steps in the proof are the derivation of a new Lieb-Thirring
inequality for the sum of eigenvalues of single particle Hamiltonians in 2D
with magnetic fields, and an estimation of the exchange-correlation energy. For
this last estimate we study a model of classical point charges with
electrostatic interactions that provides a lower bound for the true quantum
mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil
THERMAL RADIATION FROM MAGNETIZED NEUTRON STARS: A look at the Surface of a Neutron Star.
Surface thermal emission has been detected by ROSAT from four nearby young
neutron stars. Assuming black body emission, the significant pulsations of the
observed light curves can be interpreted as due to large surface temperature
differences produced by the effect of the crustal magnetic field on the flow of
heat from the hot interior toward the cooler surface. However, the energy
dependence of the modulation observed in Geminga is incompatible with blackbody
emission: this effect will give us a strong constraint on models of the neutron
star surface.Comment: 10 pages. tar-compressed and uuencoded postcript file. talk given at
the `Jubilee Gamow Seminar', St. Petersburg, Sept. 1994
Density Matrix Functional Calculations for Matter in Strong Magnetic Fields: I. Atomic Properties
We report on a numerical study of the density matrix functional introduced by
Lieb, Solovej and Yngvason for the investigation of heavy atoms in high
magnetic fields. This functional describes {\em exactly} the quantum mechanical
ground state of atoms and ions in the limit when the nuclear charge and the
electron number tend to infinity with fixed, and the magnetic field
tends to infinity in such a way that . We have
calculated electronic density profiles and ground state energies for values of
the parameters that prevail on neutron star surfaces and compared them with
results obtained by other methods. For iron at G the ground state
energy differs by less than 2 \% from the Hartree-Fock value. We have also
studied the maximal negative ionization of heavy atoms in this model at various
field strengths. In contrast to Thomas-Fermi type theories atoms can bind
excess negative charge in the density matrix model. For iron at G
the maximal excess charge in this model corresponds to about one electron.Comment: Revtex, 13 pages with 6 eps figures include
- …