700 research outputs found
Roles of the tensor and pairing correlations on the halo formation in 11Li
We study the roles of the tensor and pairing correlations on the halo
formation in 11Li with an extended 9Li+n+n model. We first solve the ground
state of 9Li in the shell model basis by taking 2p-2h states using the Gaussian
functions with variational size parameters to take into account the tensor
correlation fully. In 11Li, the tensor and pairing correlations in 9Li are
Pauli-blocked by additional two neutrons, which work coherently to make the
configurations containing the 0p1/2 state pushed up and close to those
containing the 1s1/2 state. Hence, the pairing interaction works efficiently to
mix the two configurations by equal amount and develop the halo structure in
11Li. For 10Li, the inversion phenomenon of s- and p-states is reproduced in
the same framework. Our model furthermore explains the recently observed
Coulomb breakup strength and charge radius for 11Li.Comment: 8 pages, 5 figure
Seasonal cycles of ozone and oxidized nitrogen species in northeast Asia - 2:A model analysis of the roles of chemistry and transport
[1] The dominant factors controlling the seasonal variations of ozone (O-3) and three major oxidized nitrogen species, peroxyacetyl nitrate (PAN), nitrogen oxides (NOx), and nitric acid (HNO3), in northeast Asia are investigated by using a three-dimensional global chemical transport model to analyze surface observations made at Rishiri Island, a remote island in northern Japan. The model was evaluated by comparing with observed seasonal variations, and with the relationships between O-3, CO, and PAN. We show that the model reproduces the chemical environment at Rishiri Island reasonably well, and that the seasonal cycles of O-3, CO, NOy species, and VOCs are well predicted. The impact of local emissions on some of these constituents is significant, but is not the dominant factor affecting the seasonal cycles. The seasonal roles of chemistry and transport in controlling O-3 and PAN are revealed by examining production/ destruction and import/ export/deposition fluxes in the boundary layer over the Rishiri region. For O-3, transport plays a key role throughout the year, and the regional photochemical contribution is at most 10% in summer. For PAN, in contrast, transport dominates in winter, while in-situ chemistry contributes as much as 75% in summer. It is suggested that the relative contribution of transport and in-situ chemistry is significantly different for O-3 and PAN, but that the wintertime dominance of transport due to the long chemical lifetimes of these species is sufficient to drive the seasonal cycles of springtime maximum and summertime minimum characteristic of remote sites
Hot Cell-Direct PCR Aimed at Specific Cell Detection
Since the polymerase chain reaction (PCR) was proposed, it has become an essential method in the field of biological gene analysis, providing a method to amplify DNA sequences of interest. To detect and/or analyze genes in cells, the gene or expressed gene must first be extracted before PCR. This procedure takes time and may result in the loss of samples. In order to avoid such drawbacks, two methods, hot cell-direct PCR and reverse transcription-PCR (RT-PCR), were invented, to detect genes in cells. Using hot cell-direct PCR, specific genes in microbial cells such as invA in Salmonella enterica have been easily detected and applied to discriminate Archaea from bacteria. As hot cell-direct PCR and RT-PCR are fairly simple processes, they can be applied to detect genes in single cells. We developed an original compact disc (CD)-shaped microfluidic device with microchambers for single-cell isolation and a detection system for expressed genes in isolated single cells in a microchamber on the device. We succeeded in the detection of PCR and RT-PCR products in individual cells and successfully detected S. enterica cells by hot cell-direct PCR. Expressed genes in Jurkat cells—human leukemia T cells—were analyzed by this method
Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types
International audienceDuring August 2004 an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS Model 3800-100) and an Aerodyne Aerosol Mass Spectrometer (AMS) were deployed at Mace Head during the NAMBLEX campaign. Single particle data (size, positive and negative mass spectra) from the ATOFMS were imported into ART 2a, a neural network algorithm, which assigns individual particles to clusters on the basis of their mass spectral similarities. Results are very consistent with previous time consuming manual classifications (Dall'Osto et al., 2004). Three broad classes were found: sea-salt, dust and carbon-containing particles, with a number of sub-classes within each. The Aerodyne (AMS) instrument was also used during NAMBLEX, providing online, real time measurements of the mass of non-refractory components of aerosol particles as function of their size. The ATOFMS detected a type of particle not identified in our earlier analysis, with a strong signal at m/z 24, likely due to magnesium. This type of particle was detected during the same periods as pure unreacted sea salt particles and is thought to be biogenic, originating from the sea surface. AMS data are consistent with this interpretation, showing an additional organic peak in the corresponding size range at times when the Mg-rich particles are detected. The work shows the ATOFMS and AMS to be largely complementary, and to provide a powerful instrumental combination in studies of atmospheric chemistry
Okaramine insecticidal alkaloids show similar activity on both exon 3c and exon 3b variants of glutamate-gated chloride channels of the larval silkworm, Bombyx mori
The okaramine indole alkaloids were recently shown to be more selective than ivermectin in activating the glutamate-gated chloride channels of the silkworm larvae of Bombyx mori (BmGluCls). Those studies were carried out using the exon 3b variant as a representative of BmGluCls. However, it remains unknown whether okaramines are similarly effective on other silkworm GluCl variants and whether they share the same binding site as ivermectin on GluCls. To begin to address these questions, we examined the potency of four okaramines on the exon 3c variant of BmGluCls by two-electrode voltage clamp voltage recordings of glutamate-induced chloride currents. The potency of okaramines in activating the exon 3c BmGluCl agreed well with findings on the exon 3b BmGluCl and insecticidal potency. Okaramine B (10μM) reduced the maximum binding (Bmax) but not the dissociation constant (KD) of [(3)H]ivermectin in studies on plasma membrane fractions of HEK293 cells expressing the exon 3c variant. These findings indicate that activation of GluCls is important in the insecticidal actions of okaramines
Triaxial deformation in 10Be
The triaxial deformation in Be is investigated using a microscopic
model. The states of two valence neutrons are classified
based on the molecular-orbit (MO) model, and the -orbit is introduced
about the axis connecting the two -clusters for the description of the
rotational bands. There appear two rotational bands comprised mainly of and , respectively, at low excitation energy, where the two
valence neutrons occupy or orbits. The
triaxiality and the -mixing are discussed in connection to the molecular
structure, particularly, to the spin-orbit splitting. The extent of the
triaxial deformation is evaluated in terms of the electro-magnetic transition
matrix elements (Davydov-Filippov model, Q-invariant model), and density
distribution in the intrinsic frame. The obtained values turned out to be
.Comment: 15 pages, latex, 3 figure
The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish
The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA)]. Loss of Yap's TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by repressing Rx1-mediated transactivation of photoreceptor cell genes during zebrafish retinogenesis
Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes
The structure of the second 0^+ state of ^{10}Be is investigated using a
microscopic model based on the molecular-orbit (MO) model.
The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is
shown to have a particularly enlarged structure. The kinetic
energy of the two valence neutrons occupying along the axis is
reduced remarkably due to the strong clustering and, simultaneously,
the spin-orbit interaction unexpectedly plays important role to make the energy
of this state much lower. The mixing of states with different spin structure is
shown to be important in negative-parity states. The experimentally observed
small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence
of this spin-mixing effect. ^{12}{Be} is also investigated using
model, in which four valence neutrons are considered to
occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is
shown to exhibit similar characteristics, that the remarkable
clustering and the contribution of the spin-orbit interaction make the binding
of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in
comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure
- …