904 research outputs found

    Finite Volume Scaling of Pseudo Nambu-Goldstone Bosons in QCD

    Get PDF
    We consider chiral perturbation theory in a finite volume and in a mixed regime of quark masses. We take N_l light quarks near the chiral limit, in the so-called epsilon-regime, while the remaining N_h quarks are heavier and in the standard p-regime. We compute in this new mixed regime the finite-size scaling of the light meson correlators in the scalar, pseudoscalar, vector and axial vector channels.Using the replica method, we easily extend our results to the partially quenched theory. With the help of our results, lattice QCD simulations with 2+1 flavors can safely investigate pion physics with very light up and down quark masses even in the region where the pion's correlation length overcomes the size of the space-time lattice.Comment: 32 pages, 6 figures, published versio

    Partially quenched chiral perturbation theory in the epsilon-regime

    Full text link
    We calculate meson correlators in the epsilon-regime within partially quenched chiral perturbation theory. The valence quark masses and sea quark masses can be chosen arbitrary and all non-degenerate. Taking some of the sea quark masses to infinity, one obtains a smooth connection among the theories with different number of flavors, as well as the quenched theory. These results can be directly compared with lattice QCD simulations.Comment: 40pages, 7figures, Minor changes, references adde

    Lattice study of meson correlators in the epsilon-regime of two-flavor QCD

    Full text link
    We calculate mesonic two-point functions in the epsilon-regime of two-flavor QCD on the lattice with exact chiral symmetry. We use gauge configurations of size 16^3 32 at the lattice spacing a \sim 0.11 fm generated with dynamical overlap fermions. The sea quark mass is fixed at \sim 3 MeV and the valence quark mass is varied in the range 1-4 MeV, both of which are in the epsilon-regime. We find a good consistency with the expectations from the next-to-leading order calculation in the epsilon-expansion of (partially quenched) chiral perturbation theory. From a fit we obtain the pion decay constant F=87.3(5.6) MeV and the chiral condensate Sigma^{MS}=[239.8(4.0) MeV ]^3 up to next-to-next-to-leading order contributions.Comment: 20 pages, 12 figures, final version to appear in PR

    Overlap/Domain-wall reweighting

    Full text link
    We investigate the eigenvalues of nearly chiral lattice Dirac operators constructed with five-dimensional implementations. Allowing small violation of the Ginsparg-Wilson relation, the HMC simulation is made much faster while the eigenvalues are not significantly affected. We discuss the possibility of reweighting the gauge configurations generated with domain-wall fermions to those of exactly chiral lattice fermions.Comment: 7 pages, 3 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July-3 August 2013, Mainz, German
    • …
    corecore