86 research outputs found

    Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Get PDF
    We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Fabrication of macroporous alumina with tailored porosity

    No full text
    Macroporous alumina materials were fabricated via colloidal processing using polymer spheres as the template and ceramic particles as the building blocks. The influence of the suspension conditions and volume ratio of the polymer/ceramic particles on the formation of the pore structure has been investigated. The results showed that the suspension conditions have a significant effect on the pore morphology. A well-defined three-dimensional, ordered porous structure with a controllable pore size and porosity could be obtained through the hetero-coagulation, self-assembled processing of the polymer/ceramic particles. The pore size and porosity could be easily tailored by varying the polymer size and the volume ratio of the polymer/ceramic particles

    Fabrication of ordered macroporous structures based on hetero-coagulation process using nanoparticle as building blocks

    No full text
    A simple method based on hetero-coagulation process for the preparation of well-defined ordered macroporous inorganic materials from nanoparticles and spherical polymer templates is reported
    • 

    corecore