322 research outputs found

    AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods

    Get PDF
    Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard

    Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect

    Get PDF
    The launch of ADEOS in August 1996 with POLDER, TOMS, and OCTS instruments on board and the future launch of EOS-AM 1 in mid-1998 with MODIS and MISR instruments on board start a new era in remote sensing of aerosol as part of a new remote sensing of the whole Earth system (see a list of the acronyms in the Notation section of the paper). These platforms will be followed by other international platforms with unique aerosol sensing capability, some still in this century (e.g., ENVISAT in 1999). These international spaceborne multispectral, multiangular, and polarization measurements, combined for the first time with international automatic, routine monitoring of aerosol from the ground, are expected to form a quantum leap in our ability to observe the highly variable global aerosol. This new capability is contrasted with present single-channel techniques for AVHRR, Meteosat, and GOES that although poorly calibrated and poorly characterized already generated important aerosol global maps and regional transport assessments. The new data will improve significantly atmospheric corrections for the aerosol effect on remote sensing of the oceans and be used to generate first real-time atmospheric corrections over the land. This special issue summarizes the science behind this change in remote sensing, and the sensitivity studies and applications of the new algorithms to data from present satellite and aircraft instruments. Background information and a summary of a critical discussion that took place in a workshop devoted to this topic is given in this introductory paper. In the discussion it was concluded that the anticipated remote sensing of aerosol simultaneously from several space platforms with different observation strategies, together with continuous validations around the world, is expected to be of significant importance to test remote sensing approaches to characterize the complex and highly variable aerosol field. So far, we have only partial understanding of the information content and accuracy of the radiative transfer inversion of aerosol information from the satellite data, due to lack of sufficient theoretical analysis and applications to proper field data. This limitation will make the anticipated new data even more interesting and challenging. A main concern is the present inadequate ability to sense aerosol absorption, from space or from the ground. Absorption is a critical parameter for climate studies and atmospheric corrections. Over oceans, main concerns are the effects of white caps and dust on the correction scheme. Future improvement in aerosol retrieval and atmospheric corrections will require better climatology of the aerosol properties and understanding of the effects of mixed composition and shape of the particles. The main ingredient missing in the planned remote sensing of aerosol are spaceborne and ground-based lidar observations of the aerosol profiles

    Genetic variations within human gained enhancer elements affect human brain sulcal morphology.

    Get PDF
    The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors

    Satellite Radiation Products for Ocean Biology and Biogeochemistry: Needs, State-of-the-Art, Gaps, Development Priorities, and Opportunities

    Get PDF
    Knowing the spatial and temporal distribution of the underwater light field, i.e., the spectral and angular structure of the radiant intensity at any point in the water column, is essential to understanding the biogeochemical processes that control the composition and evolution of aquatic ecosystems and their impact on climate and reaction to climate change. At present, only a few properties are reliably retrieved from space, either directly or via water-leaving radiance. Existing satellite products are limited to planar photosynthetically available radiation (PAR) and ultraviolet (UV) irradiance above the surface and diffuse attenuation coefficient. Examples of operational products are provided, and their advantages and drawbacks are examined. The usefulness and convenience of these products notwithstanding, there is a need, as expressed by the user community, for other products, i.e., sub-surface planar and scalar fluxes, average cosine, spectral fluxes (UV to visible), diurnal fluxes, absorbed fraction of PAR by live algae (APAR), surface albedo, vertical attenuation, and heating rate, and for associating uncertainties to any product on a pixel-by-pixel basis. Methodologies to obtain the new products are qualitatively discussed in view of most recent scientific knowledge and current and future satellite missions, and specific algorithms are presented for some new products, namely sub-surface fluxes and average cosine. A strategy and roadmap (short, medium, and long term) for usage and development priorities is provided, taking into account needs and readiness level. Combining observations from satellites overpassing at different times and geostationary satellites should be pursued to improve the quality of daily-integrated radiation fields, and products should be generated without gaps to provide boundary conditions for general circulation and biogeochemical models. Examples of new products, i.e., daily scalar PAR below the surface, daily average cosine for PAR, and sub-surface spectral scalar fluxes are presented. A procedure to estimate algorithm uncertainties in the total uncertainty budget for above-surface daily PAR, based on radiative simulations for expected situations, is described. In the future, space-borne lidars with ocean profiling capability offer the best hope for improving our knowledge of sub-surface fields. To maximize temporal coverage, space agencies should consider placing ocean-color instruments in L1 orbit, where the sunlit part of the Earth can be frequently observed

    Dermatologic findings in 16 patients with Cockayne syndrome and cerebro-oculo-facial-skeletal syndrome

    Get PDF
    IMPORTANCE: Cockayne syndrome (CS) and cerebro-oculo-facial-skeletal (COFS) syndrome are autosomal recessive diseases that belong to the family of nucleotide excision repair disorders. Our aim was to describe the cutaneous phenotype of patients with these rare diseases. OBSERVATIONS: A systematic dermatologic examination of 16 patients included in a European study of CS was performed. The patients were aged 1 to 28 years. Six patients (38%) had mutations in the Cockayne syndrome A (CSA) gene, and the remaining had Cockayne syndrome B (CSB) gene mutations. Fourteen patients were classified clinically as having CS and 2 as having COFS syndrome. Photosensitivity was present in 75% of the patients and was characterized by sunburn after brief sun exposure. Six patients developed symptoms after short sun exposure through a windshield. Six patients had pigmented macules on sun-exposed skin, but none developed a skin neoplasm. Twelve patients (75%) displayed cyanotic acral edema of the extremities. Eight patients had nail dystrophies and 7 had hair anomalies. CONCLUSIONS AND RELEVANCE: The dermatologic findings of 16 cases of CS and COFS syndrome highlight the high prevalence of photosensitivity and hair and nail disorders. Cyanotic acral edema was present in 75% of our patients, a finding not previously reported in CS

    Epigenetic variance in dopamine D2 receptor: A marker of IQ malleability?

    Get PDF
    Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the “missing heritability” between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure

    Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults

    No full text
    © 2014, The Author(s).Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder
    corecore