378 research outputs found
Is Women’s Undernutrition Synonymous with Household Food Insufficiency? Evidence from Northern Ghana
Background: Policy making in Sub-Saharan Africa commonly assume that food and nutrition security programs that target food insecure households would most likely impact on malnourished individuals. This is despite the compelling evidence from elsewhere in the developing world that show a food distribution pattern that is discriminatory against women and girls in particular. Objectives: We attempt to examine the extent of the association between measures of women nutritional attainment and household food (in)security, where we determine whether distributional analysis of people’s nutrition can reliably predict women’s individual nutritional well-being from measures of household level food access. Secondly, we ask whether all malnourished women, or at least a large bulk of them are located within food insecure households, such that they can be reliably targeted through household level food security interventions. Results: A Spearman Correlation analysis between women’s nutritional attainment and household level food (in)security show a positive association at aggregate level; and among households that are considered to be food secure but not among households facing food crisis. We further adopt the use of concentration curves and Indices, as well as joint and conditional probabilities to establish a pattern of distribution on malnourished women across different levels of household food (in)security. Our results show that though a larger proportion of malnourished women are located within food insecure households; there is still considerable evidence of a wide dispersion of incidences of women undernutrition, where an average of 30% of malnourished women were located outside of 40% of the households whose food insecurity status was most severe. Conditional probabilities show more or less equal chances of women being malnourished irrespective of food security level of households within which they are located
Microresonator solitons for massively parallel coherent optical communications
Optical solitons are waveforms that preserve their shape while propagating,
relying on a balance of dispersion and nonlinearity. Soliton-based data
transmission schemes were investigated in the 1980s, promising to overcome the
limitations imposed by dispersion of optical fibers. These approaches, however,
were eventually abandoned in favor of wavelength-division multiplexing (WDM)
schemes that are easier to implement and offer improved scalability to higher
data rates. Here, we show that solitons may experience a comeback in optical
communications, this time not as a competitor, but as a key element of
massively parallel WDM. Instead of encoding data on the soliton itself, we
exploit continuously circulating dissipative Kerr solitons (DKS) in a
microresonator. DKS are generated in an integrated silicon nitride
microresonator by four-photon interactions mediated by Kerr nonlinearity,
leading to low-noise, spectrally smooth and broadband optical frequency combs.
In our experiments, we use two interleaved soliton Kerr combs to transmit a
data stream of more than 50Tbit/s on a total of 179 individual optical carriers
that span the entire telecommunication C and L bands. Equally important, we
demonstrate coherent detection of a WDM data stream by using a pair of
microresonator Kerr soliton combs - one as a multi-wavelength light source at
the transmitter, and another one as a corresponding local oscillator (LO) at
the receiver. This approach exploits the scalability advantages of
microresonator soliton comb sources for massively parallel optical
communications both at the transmitter and receiver side. Taken together, the
results prove the significant potential of these sources to replace arrays of
continuous-wave lasers in high-speed communications.Comment: 10 pages, 3 figure
Ultrafast optical ranging using microresonator soliton frequency combs
Light detection and ranging (LIDAR) is critical to many fields in science and
industry. Over the last decade, optical frequency combs were shown to offer
unique advantages in optical ranging, in particular when it comes to fast
distance acquisition with high accuracy. However, current comb-based concepts
are not suited for emerging high-volume applications such as drone navigation
or autonomous driving. These applications critically rely on LIDAR systems that
are not only accurate and fast, but also compact, robust, and amenable to
cost-efficient mass-production. Here we show that integrated dissipative
Kerr-soliton (DKS) comb sources provide a route to chip-scale LIDAR systems
that combine sub-wavelength accuracy and unprecedented acquisition speed with
the opportunity to exploit advanced photonic integration concepts for
wafer-scale mass production. In our experiments, we use a pair of free-running
DKS combs, each providing more than 100 carriers for massively parallel
synthetic-wavelength interferometry. We demonstrate dual-comb distance
measurements with record-low Allan deviations down to 12 nm at averaging times
of 14 s as well as ultrafast ranging at unprecedented measurement rates of
up to 100 MHz. We prove the viability of our technique by sampling the
naturally scattering surface of air-gun projectiles flying at 150 m/s (Mach
0.47). Combining integrated dual-comb LIDAR engines with chip-scale
nanophotonic phased arrays, the approach could allow widespread use of compact
ultrafast ranging systems in emerging mass applications.Comment: 9 pages, 3 figures, Supplementary information is attached in
'Ancillary files
Ultra-short silicon-organic hybrid (SOH) modulator for bidirectional polarization-independent operation
We propose a bidirectional, polarization-independent, recirculating IQ-modulator scheme based on the silicon-organic hybrid (SOH) platform. We demonstrate the viability of the concept by using an SOH Mach-Zehnder modulator, operated at 10 GBd BPSK and 2ASK-2PSK
Silicon-organic hybrid electro-optical devices
Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices
- …