824 research outputs found

    Automatic alignment of surgical videos using kinematic data

    Full text link
    Over the past one hundred years, the classic teaching methodology of "see one, do one, teach one" has governed the surgical education systems worldwide. With the advent of Operation Room 2.0, recording video, kinematic and many other types of data during the surgery became an easy task, thus allowing artificial intelligence systems to be deployed and used in surgical and medical practice. Recently, surgical videos has been shown to provide a structure for peer coaching enabling novice trainees to learn from experienced surgeons by replaying those videos. However, the high inter-operator variability in surgical gesture duration and execution renders learning from comparing novice to expert surgical videos a very difficult task. In this paper, we propose a novel technique to align multiple videos based on the alignment of their corresponding kinematic multivariate time series data. By leveraging the Dynamic Time Warping measure, our algorithm synchronizes a set of videos in order to show the same gesture being performed at different speed. We believe that the proposed approach is a valuable addition to the existing learning tools for surgery.Comment: Accepted at AIME 201

    Immortalization of T-cells is accompanied by gradual changes in CpG methylation resulting in a profile resembling a subset of T-cell leukemias

    Get PDF
    We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis

    D 5.5.1.1. Final report on sensory testing in Africa for Group 1. Project AFTER “African Food Tradition rEvisited by Research”

    Full text link
    This deliverable concerns the sensory evaluation of the reengineered group 1 African products in the AFTER project. Specifically, it related to reengineered akpan and gowe from Benin, kenkey from Ghana and Kishk Sa'eedi in Egypt. Concerning reengineered akpan from Benin, the sensory evaluation was undertaken in Montpellier, France. Re-engineering of akpan has focused primarily on improvement of sanitary properties of the product, which was a great achievement and will allow producing Akpan on a larger scale in SMEs in Africa. Sensory evaluation of the Akpan products was carried out using CATA and JAR techniques that have been developed for use with consumers instead of a trained panel. Three Akpan products were tested by 102 consumers: Akpan added with 10% sugar (AS10), Akpan added with 3% spray-dried milk and 8.7% sugar (AMS8.7) and Akpan added with 3% spray-dried milk and 15% sugar (AMS15). Independently of the Akpan tasted, Acidity or Sweetness attributes were scored “Just About Right, as I like” by 56 to 77% of consumers. Odour perception was perceived differently, depending on consumers. However, Texture was found “Too weak”, too liquid by the majority of consumers (49 to 55%) and Taste “too strong” (46 to 54%). The most frequently CATA descriptors checked by consumers which better described Akpan products were: “Artificial”, “Floral”, “New/Different”, “Strong in Taste”, “Mealy”, followed by “Liquid”, “Drinking yoghurt”, “Sweet”, “Acidic”, and “Rough”. At the opposite, an ideal-yoghurt was described as Creamy, Natural, Good for health, Refreshing, Homogeneous, with a texture of a Bulgarian yoghurt-type, Thick, Sweet, Attractive, Nutritious and Milk taste. In terms of sensory evaluation, the three Akpan products did not significantly. If we remove the terms such as “artificial”, “strong in taste”, “floral” due to a manufacturing error (use of a few drops of citronella essential oil instead of citronella infusion as a traditional flavouring of Akpan in Benin), it remains the terms “mealy”, “liquid” “drinking yoghurt” that better describe the product and were previously used for describing traditional Akpan product. This suggests that sensory properties of the reengineered Akpan may not be acceptable to French consumers who prefer a product with a creamy, homogeneous, Bulgarian yoghurt-type taste. Gowe in Benin was not tested using sensory evaluation. Sensory testing of Gowe in Benin was not undertaken because this was planned to be undertaken in Europe. The reason is because the methodology used in sensory evaluation is independent of the location provided the samples are the same. However, the particular samples provided for French sensory testing contained a concentration of aflatoxin that was higher than the minimum EU allowable limit. It was not possible to repeat the sensory test in France because it would have taken too long to obtain a replacement supply from Benin and to repeat the processing (takes one week). In which case the samples would have been took different to enable a comparison. The sensory evaluation of kenkey was carried at the Food Research Institute, Ghana. Current trends in urbanization, and the increasing popularity of kenkey among consumers, require larger scale production with consistent quality. Testing was conducted to determine the sensory profile of white reengineered kenkey made using the optimum pre-process conditions of steeping time (30 and 45h), steeping temperature (30ᵒC and 35ᵒC) and dough fermentation time of 12 hours. The qualitative descriptive analysis showed that the sensory profile of white kenkey was dependent on preprocessing variables. Thus merely optimizing the pre-processing variables with regards to acid production and other readily measurable constituents though could shorten the production process could not guarantee the best product sensory quality. The results show that all the descriptors generated were appropriate for differentiating sensory qualities among samples and could be used for basic research and product development for white kenkey. Soft and sticky texture in white kenkey was highly appreciated. Sensory evaluation of Kishk Sa'eedi (KS) was undertaken in Egypt. KS is an Egyptian indigenous wheat-based fermented food prepared traditionally according to the method applied by Upper Egyptians. This work is done to characterize sensory properties and sensory profile of the reengineered KS. Quantitative descriptive analysis (QDA) coupled with principal component analysis (PCA) was used to study the interrelationship among and between sensory attributes. 14 terms regarding appearance, odour, flavour and texture of the samples, was selected and a glossary describing each descriptor was developed. Three KS samples were profiled by 11 assessors using the chosen 14 sensory descriptors. Mean intensity ratings of the descriptive attributes showed that there were significant differences (p<0.05) within KS samples for all the 14 attributes tested. In general, high ratings for creamy colour, fresh odour, KS taste and fracturability are considered as positive effects that would be favoured by panellists while increase in caramel colour, sour taste, denseness and mouth coating are regarded as undesirable. The re-engineered KS sample perceived as less sour and less salty compared with the traditional ones. With regard to texture quality, reengineered sample was easy to fracture, and scored higher for grittiness. Meanwhile, the sample was rated lower than the traditional ones with regard to Kishk taste and fermented odour. Descriptive sensory evaluations between of the traditional and re-engineered KS samples showed that tastes i.e. sour, salty, and KS taste; fracutability and grittiness were discriminating attributes. Fermented odour, colour i.e. creamy and caramel; presence of fissure and presence of bran were least discriminating. Evaluation of the KS sensory characteristics provide in depth understanding of the sensory quality criteria as perceived by the sensory trained panel. The present study showed that substantial differences in sensory character were noted between the traditional and re-engineered KS in particular, differences in colour, fresh odour, KS taste, fracutability and mouth coating. This work showed that the application of QFD and PCA techniques could provide the useful information to KS and helped to identify the importance of product attributes. In conclusion the sensory evaluation showed clear sensory differences between the traditional and reengineered products relating to akpan from Benin, kenkey from Ghana and Kishk Sa'eedi from Egypt. Other deliverables will report on the acceptance by consumers

    Multi-modality image simulation with the Virtual Imaging Platform: Illustration on cardiac echography and MRI

    Get PDF
    International audienceMedical image simulation is useful for biological modeling, image analysis, and designing new imaging devices but it is not widely available due to the complexity of simulators, the scarcity of object models, and the heaviness of the associated computations. This paper presents the Virtual Imaging Platform, an openly-accessible web platform for multi-modality image simulation. The integration of simulators and models is described and exemplified on simulated cardiac MRIs and ultrasonic images

    In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    Get PDF
    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches. Several studies provided conclusive evidence that a delicate balance between mammary epithelial cell proliferation and apoptosis regulates homeostasis in the healthy breast tissue 1-7. After menarche, and in the absence of pregnancy, the adult female mammary gland is subjected to cyclic fluctuations depending on hormonal stimulation 1,8. In response to such systemic hormonal changes, the breast epithelium undergoes a tightly regulated sequence of cell proliferation and apoptosis during each ovarian/menstrual cycle 1-3. The peak of epithelial cell proliferation has been reported to occur during the luteal phase, suggesting a synergistic influence of steroid hormones, such as estrogen and progesterone 2-5. In turn, the peak of apoptotic activity would be expected in response to decreasing hormone levels towards the end of the menstrual cycle 2-5. However, recent histologic findings indicate that apoptosis reaches its maximum levels in the middle of the luteal phase, although there is also a peak at about the third day of the menstrual cycle 6,7. Experimental measurements of cell turnover, i.e. programmed cell death and proliferation, demonstrated that an imbalance between the mitotic and apoptotic activity might lead to malignant transformation of epithelial cells and tumorigenic processes 9-11. Indeed, excessive cell proliferation promotes accumulation of DNA damage due to insufficient timely repair and mutations 12,13. There is also recent evidence that hormones suppress effective DNA repair and alter DNA damage response (DDR) 13-15
    • …
    corecore