20 research outputs found

    Effects of Moisture Content on Some Physical Properties of Apricot Kernel (CV. Sonnati Salmas)

    Get PDF
    Investigation of physical properties of apricot kernel is necessary for the design of equipment for processing, transportation, sorting and separating. In this research the physical properties of apricot kernels have been evaluated as a function of moisture content vary from 2.86 to 13.03% (w.b.). With increasing in moisture content, kernel length, width, thickness, geometric mean diameter and surface area increased; the sphericity varyied from 62.2% to 62.9%; mass, thousand grain mass, volume and true density increased from 0.437 to 0.484 (gr), 437.4 to 484 (gr), 0.431 to 0.473 (cm3) and 1015.7 to 1023.5 (kg/m3), respectively; The porosity and bulk density decreased from 47.21 to 42.71% and 580.02 to 540.11 (kg/m3) respectively. The angle of static friction on all surfaces increased as the moisture content increased

    Klebsiella aerogenes adhesion behaviour during biofilm formation on monazite

    Get PDF
    The adsorption behaviour of micro-organisms during the initial attachment stage of biofilm formation affects subsequent stages. The available area for attachment and the chemophysical properties of a surface affect microbial attachment performance. This study focused on the initial attachment behaviour of Klebsiella aerogenes on monazite by measuring the ratio of planktonic against sessile subpopulations (P:S ratio), and the potential role of extracellular DNA (eDNA). eDNA production, effects of physicochemical properties of the surface, particle size, total available area for attachment, and the initial inoculation size on the attachment behaviour were tested. K. aerogenes attached to monazite immediately after exposure to the ore; however, the P:S ratio significantly (p = 0.05) changed in response to the particle size, available area, and inoculation size. Attachment occurred preferentially on larger-sized (~50 µm) particles, and either decreasing the inoculation size or increasing the available area further promoted attachment. Nevertheless, a portion of the inoculated cells always remained in a planktonic state. K. aerogenes produced lower eDNA in response to the changed surface chemical properties when monazite was replaced by xenotime. Using pure eDNA to cover the monazite surface significantly (p ≤ 0.05) hindered bacterial attachment due to the repulsive interaction between the eDNA layer and bacteria

    Closed-Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes

    Get PDF
    International audienceIn the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ever-increasing accumulation of electronic waste, e-waste, in the environment. This work is targeting copper, the most abundant metal in e-waste that represents up to 20% by weight of printed circuit boards (PCBs). In the first stage, bioleaching was tested for different pulp densities (0.25–1.00% w/v) and successfully used to extract multiple metals from PCBs using the acidophilic bacterium, Acidithiobacillus ferrooxidans. In the second stage, the method focused on the recovery of copper from the bioleachate by electrowinning. Metallic copper foils were formed, and the results demonstrated that 75.8% of copper available in PCBs had been recovered as a high quality copper foil, with 99 + % purity, as determined by energy dispersive X-ray analysis and Inductively-Coupled Plasma Optical Emission Spectrometry. This model of copper extraction, combining bioleaching and electrowinning, demonstrates a closed-loop method of recycling that illustrates the application of bioleaching in the circular economy. The copper foils have the potential to be reused, to form new, high value copper clad laminate for the production of complex printed circuit boards for the electronics manufacturing industry. Graphic Abstract: [Figure not available: see fulltext.] © 2020, The Author(s)

    Some mechanical properties of barberry

    No full text

    Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources

    No full text
    In an era of environmental degradation, and water, and mineral scarcity, enhancing microbial function in sustainable mining has become a prerequisite for the future of the green economy. In recent years, the extensive use of rare earth elements (REEs) in green and smart technologies has led to an increase in the focus on recovery and separation of REEs from ore matrices. However, the recovery of REEs using traditional methods is complex and energy intensive, leading to the requirement to develop processes which are more economically feasible and environmentally friendly. The use of phosphate solubilizing microorganisms for bioleaching of REEs provides a biotechnical approach for the recovery of REEs from primary and secondary sources. However, managing and understanding the microbial-mineral interactions in order to develop a successful method for bioleaching of REEs still remains a major challenge. This review focuses on the use of microbes for the bioleaching of REEs and highlights the importance of genomic studies in order to narrow down potential microorganisms for the optimal extraction of REEs

    GTAR:a new ensemble evolutionary autoregressive approach to model dissolved organic carbon

    No full text
    Abstract This article explores the forecasting capabilities of three classic linear and nonlinear autoregressive modeling techniques and proposes a new ensemble evolutionary time series approach to model and forecast daily dynamics in stream dissolved organic carbon (DOC). The model used data from the Oulankajoki River basin, a boreal catchment in Northern Finland. The models that were evolved used both accuracy and parsimony measures including autoregressive (AR), vector autoregressive (VAR), and self-exciting threshold autoregressive (SETAR). The new method, called genetic-based SETAR (GTAR), evolved through the integration of state-of-the-art genetic programming with SETAR. To develop the models, high-resolution DOC concentration and daily streamflow (as the external input for VAR) were measured at the same gauging station throughout the ice free season. The results showed that all the models characterize the DOC dynamics with an acceptable 1-day-ahead forecasting accuracy. Use of the streamflow time series as an exogenous variable did not increase the predictive accuracy of AR models. Moreover, the hybrid GTAR provided the best accuracy for the holdout testing data and proved to be a suitable approach for predicting DOC in boreal conditions

    Biofilm formation on the surface of monazite and xenotime during bioleaching

    Get PDF
    Abstract Microbial attachment and biofilm formation is a ubiquitous behaviour of microorganisms and is the most crucial prerequisite of contact bioleaching. Monazite and xenotime are two commercially exploitable minerals containing rare earth elements (REEs). Bioleaching using phosphate solubilizing microorganisms is a green biotechnological approach for the extraction of REEs. In this study, microbial attachment and biofilm formation of Klebsiella aerogenes ATCC 13048 on the surface of these minerals were investigated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In a batch culture system, K. aerogenes was able to attach and form biofilms on the surface of three phosphate minerals. The microscopy records showed three distinctive stages of biofilm development for K. aerogenes commencing with initial attachment to the surface occurring in the first minutes of microbial inoculation. This was followed by colonization of the surface and formation of a mature biofilm as the second distinguishable stage, with progression to dispersion as the final stage. The biofilm had a thin‐layer structure. The colonization and biofilm formation were localized toward physical surface imperfections such as cracks, pits, grooves and dents. In comparison to monazite and xenotime crystals, a higher proportion of the surface of the high‐grade monazite ore was covered by biofilm which could be due to its higher surface roughness. No selective attachment or colonization toward specific mineralogy or chemical composition of the minerals was detected. Finally, in contrast to abiotic leaching of control samples, microbial activity resulted in extensive microbial erosion on the high‐grade monazite ore
    corecore