82 research outputs found

    In vivo Ca2+ dynamics induced by Ca2+ injection in individual rat skeletal muscle fibers

    Get PDF
    Citation: Wakizaka, M., Eshima, H., Tanaka, Y., Shirakawa, H., Poole, D. C., & Kano, Y. (2017). In vivo Ca2+ dynamics induced by Ca2+ injection in individual rat skeletal muscle fibers. Physiological Reports, 5(5), 10. doi:10.14814/phy2.13180In contrast to cardiomyocytes, store overload-induced calcium ion (Ca2+) release (SOICR) is not considered to constitute a primary Ca2+ releasing system from the sarcoplasmic reticulum (SR) in skeletal muscle myocytes. In the latter, voltage-induced Ca2+ release (VICR) is regarded as the dominant mechanism facilitating contractions. Any role of the SOICR in the regulation of cytoplasmic Ca2+ concentration ([Ca2+](i)) and its dynamics in skeletal muscle in vivo remains poorly understood. By means of in vivo single fiber Ca2+ microinjections combined with bioimaging techniques, we tested the hypothesis that the [Ca2+](i) dynamics following Ca2+ injection would be amplified and fiber contraction facilitated by SOICR. The circulation-intact spinotrapezius muscle of adult male Wistar rats (n = 34) was exteriorized and loaded with Fura-2 AM to monitor [Ca2+](i) dynamics. Groups of rats underwent the following treatments: (1) 0.02, 0.2, and 2.0 mmol/L Ca2+ injections, (2) 2.0 mmol/L Ca2+ with inhibition of ryanodine receptors (RyR) by dantrolene sodium (DAN), and (3) 2.0 mmol/L Ca2+ with inhibition of SR Ca2+ ATPase (SERCA) by cyclopiazonic acid (CPA). A quantity of 0.02 mmol/L Ca2+ injection yielded no detectable response, whereas peak evoked [Ca2+](i) increased 9.9 +/- 1.8% above baseline for 0.2 mmol/L and 23.8 c 4.3% (P < 0.05) for 2.0 mmol/L Ca2+ injections. The peak [Ca2+](i) in response to 2.0 mmol/L Ca2+ injection was largely abolished by DAN and CPA (-85.8%, -71.0%, respectively, both P < 0.05 vs. unblocked) supporting dependence of the [Ca2+](i) dynamics on Ca2+ released by SOICR rather than injected Ca2+ itself. Thus, this investigation demonstrates the presence of a robust SR-evoked SOICR operant in skeletal muscle in vivo

    Type II NKT Cells Stimulate Diet-Induced Obesity by Mediating Adipose Tissue Inflammation, Steatohepatitis and Insulin Resistance

    Get PDF
    The progression of obesity is accompanied by a chronic inflammatory process that involves both innate and acquired immunity. Natural killer T (NKT) cells recognize lipid antigens and are also distributed in adipose tissue. To examine the involvement of NKT cells in the development of obesity, C57BL/6 mice (wild type; WT), and two NKT-cell-deficient strains, Jα18−/− mice that lack the type I subset and CD1d−/− mice that lack both the type I and II subsets, were fed a high fat diet (HFD). CD1d−/− mice gained the least body weight with the least weight in perigonadal and brown adipose tissue as well as in the liver, compared to WT or Jα18−/− mice fed an HFD. Histologically, CD1d−/− mice had significantly smaller adipocytes and developed significantly milder hepatosteatosis than WT or Jα18−/− mice. The number of NK1.1+TCRβ+ cells in adipose tissue increased when WT mice were fed an HFD and were mostly invariant Vα14Jα18-negative. CD11b+ macrophages (Mφ) were another major subset of cells in adipose tissue infiltrates, and they were divided into F4/80high and F4/80low cells. The F4/80low-Mφ subset in adipose tissue was increased in CD1d−/− mice, and this population likely played an anti-inflammatory role. Glucose intolerance and insulin resistance in CD1d−/− mice were not aggravated as in WT or Jα18−/− mice fed an HFD, likely due to a lower grade of inflammation and adiposity. Collectively, our findings provide evidence that type II NKT cells initiate inflammation in the liver and adipose tissue and exacerbate the course of obesity that leads to insulin resistance

    Contraindications of sentinel lymph node biopsy: Áre there any really?

    Get PDF
    BACKGROUND: One of the most exciting and talked about new surgical techniques in breast cancer surgery is the sentinel lymph node biopsy. It is an alternative procedure to standard axillary lymph node dissection, which makes possible less invasive surgery and side effects for patients with early breast cancer that wouldn't benefit further from axillary lymph node clearance. Sentinel lymph node biopsy helps to accurately evaluate the status of the axilla and the extent of disease, but also determines appropriate adjuvant treatment and long-term follow-up. However, like all surgical procedures, the sentinel lymph node biopsy is not appropriate for each and every patient. METHODS: In this article we review the absolute and relative contraindications of the procedure in respect to clinically positive axilla, neoadjuvant therapy, tumor size, multicentric and multifocal disease, in situ carcinoma, pregnancy, age, body-mass index, allergies to dye and/or radio colloid and prior breast and/or axillary surgery. RESULTS: Certain conditions involving host factors and tumor biologic characteristics may have a negative impact on the success rate and accuracy of the procedure. The overall fraction of patients unsuitable or with multiple risk factors that may compromise the success of the sentinel lymph node biopsy, is very small. Nevertheless, these patients need to be successfully identified, appropriately advised and cautioned, and so do the surgeons that perform the procedure. CONCLUSION: When performed by an experienced multi-disciplinary team, the SLNB is a highly effective and accurate alternative to standard level I and II axillary clearance in the vast majority of patients with early breast cancer
    corecore