471 research outputs found

    Faddeev calculations of break-up reactions with realistic experimental constraints

    Full text link
    We present a method to integrate predictions from a theoretical model of a reaction with three bodies in the final state over the region of phase space covered by a given experiment. The method takes into account the true experimental acceptance, as well as variations of detector efficiency, and eliminates the need for a Monte-Carlo simulation of the detector setup. The method is applicable to kinematically complete experiments. Examples for the use of this method include several polarization observables in dp break-up at 270 MeV. The calculations are carried out in the Faddeev framework with the CD Bonn nucleon-nucleon interaction, with or without the inclusion of an additional three-nucleon force.Comment: 18 pages, 9 figure

    Relation between cardiac dimensions and peak oxygen uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long term endurance training is known to increase peak oxygen uptake (<inline-formula><graphic file="1532-429X-12-8-i1.gif"/></inline-formula>) and induce morphological changes of the heart such as increased left ventricular mass (LVM). However, the relationship between <inline-formula><graphic file="1532-429X-12-8-i1.gif"/></inline-formula> and the total heart volume (THV), considering both the left and right ventricular dimensions in both males and females, is not completely described. Therefore, the aim of this study was to test the hypothesis that THV is an independent predictor of <inline-formula><graphic file="1532-429X-12-8-i1.gif"/></inline-formula> and to determine if the left and right ventricles enlarge in the same order of magnitude in males and females with a presumed wide range of THV.</p> <p>Methods and Results</p> <p>The study population consisted of 131 subjects of whom 71 were athletes (30 female) and 60 healthy controls (20 female). All subjects underwent cardiovascular MR and maximal incremental exercise test. Total heart volume, LVM and left- and right ventricular end-diastolic volumes (LVEDV, RVEDV) were calculated from short-axis images. <inline-formula><graphic file="1532-429X-12-8-i1.gif"/></inline-formula> was significantly correlated to THV, LVM, LVEDV and RVEDV in both males and females. Multivariable analysis showed that THV was a strong, independent predictor of <inline-formula><graphic file="1532-429X-12-8-i1.gif"/></inline-formula> (R<sup>2 </sup>= 0.74, p < 0.001). As LVEDV increased, RVEDV increased in the same order of magnitude in both males and females (R<sup>2 </sup>= 0.87, p < 0.001).</p> <p>Conclusion</p> <p>Total heart volume is a strong, independent predictor of maximal work capacity for both males and females. Long term endurance training is associated with a physiologically enlarged heart with a balance between the left and right ventricular dimensions in both genders.</p

    Polarization phenomena in the reaction NN to NNpi near threshold

    Full text link
    First calculations for spin-dependent observables of the reactions ppppπ0pp \to pp\pi^0, pppnπ+pp \to pn\pi^+ and ppdπ+pp \to d\pi^+ near threshold are presented, employing the J\"ulich model for pion production. The influence of resonant (via the excitation of the Δ(1232)\Delta (1232)) and non-resonant p-wave pion production mechanisms on these observables is examined. For the reactions pppnπ+pp \to pn\pi^+ and ppdπ+pp \to d\pi^+ nice agreement of our predictions with the presently available data on spin correlation coefficents is observed whereas for ppppπ0pp \to pp\pi^0 the description of the data is less satisfying.Comment: 10 pages, 4 figure

    Design and validation of Segment - freely available software for cardiovascular image analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format.</p> <p>Results</p> <p>Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page <url>http://segment.heiberg.se</url>.</p> <p>Conclusions</p> <p>Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.</p

    Experimental search for evidence of the three-nucleon force and a new analysis method

    Full text link
    A research program with the aim of investigating the spin dependence of the three-nucleon continuum in pd collisions at intermediate energies was carried out at IUCF using the Polarized INternal Target EXperiments (PINTEX) facility. In the elastic scattering experiment at 135 and 200 MeV proton beam energies a total of 15 independent spin observables were obtained. The breakup experiment was done with a vector and tensor polarized deuteron beam of 270 MeV and an internal polarized hydrogen gas target. We developed a novel technique for the analysis of the breakup observables, the sampling method. The new approach takes into account acceptance and non-uniformities of detection efficiencies and is suitable for any kinematically complete experiment with three particles in the final state.Comment: Contribution to the 19th European Few-Body Conference, Groningen Aug. 23-27, 200

    Measurement of Partial-Wave Contributions in pp --> pp pi^0

    Full text link
    We report a measurement of the spin-dependent total cross section ratios delta_sigma_T/sigma_tot and delta_sigma_L/sigma_tot of the pp --> pp pi^0 reaction between 325 MeV and 400 MeV. The experiment was carried out with a polarized internal target in a storage ring. Non-vertical beam polarization was obtained by the use of solenoidal spin rotators. Near threshold, the knowledge of both spin-dependent total cross sections is sufficient to deduce the strength of certain participating partial waves, free of any model.Comment: 6 pages, 4 figure

    Anisotropy in the pion angular distribution of the reaction pp -> pp pi0 at 400 MeV

    Get PDF
    The reaction pp -> pp pi0 was studied with the WASA detector at the CELSIUS storage ring. The center of mass angular distribution of the pi0 was obtained by detection of the gamma decay products together with the two outgoing protons, and found to be anisotropic with a negative second derivative slope, in agreement with the theoretical predictions from a microscopic calculation.Comment: Revtex 4 style, 5 pages 7 figures, PACS numbers:13.60.Le, 13.75.Cs, 21.45.+v, 25.10.+

    Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    Get PDF
    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida, within 150-miles of downtown Orlando.The DAP configuration features two large glider-like (130 ft wing span) unmanned aerial vehicles connected via a long adjustable cable (total extendible length of 3000 ft) which effectively sail without propulsion using available wind shear. Use of onboard LiDAR wind profilers to forecast wind distributions are found to be necessary to enable the platform to efficiently adjust flight conditions to remain sailing by finding sufficient wind shear across the platform. The aircraft derive power from solar cells, like a conventional solar aircraft, but also extract wind power using the propeller as a turbine when there is an excess of wind shear available.Month-long atmospheric profiles (at 3-5 min intervals) in the vicinity of 60,000-ft are derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral and used in the DAP flight simulations. A cursory evaluation of these datasets show that sufficient wind shear for DAP sailing is persistent, suggesting that DAP could potentially sail over 90% of the month-long durations even when limited by modest ascent/descent rates.DAP's novel guidance software uses a non-linear constrained optimization technique to define waypoints such that sailing mode of flight is maintained where possible, and minimal thrust is required where sailing is not practical. A set of constraints are identified which result in waypoints that enable efficient flight (i.e., minimal use of propulsion) over the two month-long flight simulations. Waypoint solutions may need to be tabulated for a wide range of potential atmospheric conditions and stored onboard for quick retrieval on a real DAP.DAP's flight control software uses an unconventional mixture of spacecraft and aircraft control techniques. Flight simulations confirms that this controls approach enables the platform to consistently reach successive waypoints over the month-long flight simulations.The ability of DAP to transition between the sailing mode (i.e., cable tension is high) and standard formation flight (i.e., cable tension is low) is a vital capability (e.g., to enable intermittent turns while stationkeeping). A new method to perform these transitions has been identified and characterized with flight simulation which requires special aircraft modifications.The energy-usage of the DAP configuration during two month-long stationkeeping missions over central Florida (i.e., stationkeeping over Orlando) is evaluated and compared to that of a pure solar aircraft of the same weight and aerodynamic performance. DAP is shown to consistently reduce net propulsion usage while simultaneously increasing solar energy capture.A baseline 700 GHz communications system is described and its performance evaluated for the proposed mission over central Florida. It is found that the variable roll orientation of the aircraft would increase the power required to maintain coverage over the stationkeeping radius of 150 miles (e.g., by as much as 100% when DAP is 150 miles from Orlando), compared to level flight. This effect can be mitigated via additional antenna design complexity or a more restricted stationkeeping radius
    corecore