79 research outputs found

    Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    Get PDF
    INTRODUCTION: Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. METHODS: In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. RESULTS: CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. CONCLUSION: These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk

    Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: the SHAPE-2 trial

    Get PDF
    Introduction Physical inactivity and overweight are risk factors for postmenopausal breast cancer. The effect of physical activity may be partially mediated by concordant weight loss. We studied the effect on serum sex hormones, which are known to be associated with postmenopausal breast cancer risk, that is attributable to exercise by comparing randomly obtained equivalent weight loss by following a hypocaloric diet only or mainly by exercise. Methods Overweight, insufficiently active women were randomised to a diet (N = 97), mainly exercise (N = 98) or control group (N = 48). The goal of both interventions was to achieve 5–6 kg of weight loss by following a calorie-restricted diet or an intensive exercise programme combined with only a small caloric restriction. Primary outcomes after 16 weeks were serum sex hormones and sex hormone-binding globulin (SHBG). Body fat and lean mass were measured by dual-energy X-ray absorptiometry. Results Both the diet (−4.9 kg) and mainly exercise (−5.5 kg) groups achieved the target weight loss. Loss of body fat was significantly greater with exercise versus diet (difference −1.4 kg, P < 0.001). In the mainly exercise arm, the reduction in free testosterone was statistically significantly greater than that of the diet arm (treatment effect ratio [TER] 0.92, P = 0.043), and the results were suggestive of a difference for androstenedione (TER 0.90, P = 0.064) and SHBG (TER 1.05, P = 0.070). Compared with the control arm, beneficial effects were seen with both interventions, diet and mainly exercise, respectively, on oestradiol (TER 0.86, P = 0.025; TER 0.83, P = 0.007), free oestradiol (TER 0.80, P = 0.002; TER 0.77, P < 0.001), SHBG (TER 1.14; TER 1.21, both P < 0.001) and free testosterone (TER 0.91, P = 0.069; TER = 0.84, P = 0.001). After adjustment for changes in body fat, intervention effects attenuated or disappeared. Conclusions Weight loss with both interventions resulted in favourable effects on serum sex hormones, which have been shown to be associated with a decrease in postmenopausal breast cancer risk. Weight loss induced mainly by exercise additionally resulted in maintenance of lean mass, greater fitness, greater fat loss and a larger effect on (some) sex hormones. The greater fat loss likely explains the observed larger effects on sex hormone

    The association between adult attained height and sitting height with mortality in the European prospective investigation into cancer and nutrition (EPIC)

    Get PDF
    Adult height and sitting height may reflect genetic and environmental factors, including early life nutrition, physical and social environments. Previous studies have reported divergent associations for height and chronic disease mortality, with positive associations observed for cancer mortality but inverse associations for circulatory disease mortality. Sitting height might be more strongly associated with insulin resistance; however, data on sitting height and mortality is sparse. Using the European Prospective Investigation into Cancer and Nutrition study, a prospective cohort of 409,748 individuals, we examined adult height and sitting height in relation to all-cause and cause-specific mortality. Height was measured in the majority of participants; sitting height was measured in ~253,000 participants. During an average of 12.5 years of follow-up, 29,810 deaths (11,931 from cancer and 7,346 from circulatory disease) were identified. Hazard ratios (HR) with 95% confidence intervals (CI) for death were calculated using multivariable Cox regression within quintiles of height. Height was positively associated with cancer mortality (men: HRQ5 vs. Q1=1.11, 95%CI=1.00-1.24; women: HRQ5 vs. Q1=1.17, 95%CI=1.07-1.28). In contrast, height was inversely associated with circulatory disease mortality (men: HRQ5 vs. Q1=0.63, 95%CI=0.56-0.71; women: HRQ5 vs. Q1=0.81, 95%CI=0.70-0.93). Although sitting height was not associated with cancer mortality, it was inversely associated with circulatory disease (men: HRQ5 vs. Q1=0.64, 95%CI=0.55-0.75; women: HRQ5 vs. Q1=0.60, 95%CI=0.49-0.74) and respiratory disease mortality (men: HRQ5 vs. Q1=0.45, 95%CI=0.28-0.71; women: HRQ5 vs. Q1=0.60, 95%CI=0.40-0.89). We observed opposing effects of height on cancer and circulatory disease mortality. Sitting height was inversely associated with circulatory disease and respiratory disease mortality

    Towards an integrated model for breast cancer etiology: The lifelong interplay of genes, lifestyle, and hormones

    Get PDF
    While the association of a number of risk factors, such as family history and reproductive patterns, with breast cancer has been well established for many years, work in the past 10–15 years also has added substantially to our understanding of disease etiology. Contributions of particular note include the delineation of the role of endogenous and exogenous estrogens to breast cancer risk, and the discovery and quantification of risk associated with several gene mutations (e.g. BRCA1). Although it is difficult to integrate all epidemiologic data into a single biologic model, it is clear that several important components or pathways exist. Early life events probably determine both the number of susceptible breast cells at risk and whether mutations occur in these cells. High endogenous estrogens are well established as an important cause of breast cancer, and many known risk factors appear to operate through this pathway. Estrogens (and probably other growth factors) appear to accelerate the development of breast cancer at many points along the progression from early mutation to tumor metastasis, and appear to be influential at many points in a woman's life. These data now provide a basis for a number of strategies that can reduce risk of breast cancer, although some strategies represent complex decision-making. Together, the modification of nutritional and lifestyle risk factors and the judicious use of chemopreventive agents could have a major impact on breast cancer incidence. Further research is needed in many areas, but a few specific arenas are given particular mention

    Radiation and breast cancer: a review of current evidence

    Get PDF
    This paper summarizes current knowledge on ionizing radiation-associated breast cancer in the context of established breast cancer risk factors, the radiation dose–response relationship, and modifiers of dose response, taking into account epidemiological studies and animal experiments. Available epidemiological data support a linear dose–response relationship down to doses as low as about 100 mSv. However, the magnitude of risk per unit dose depends strongly on when radiation exposure occurs: exposure before the age of 20 years carries the greatest risk. Other characteristics that may influence the magnitude of dose-specific risk include attained age (that is, age at observation for risk), age at first full-term birth, parity, and possibly a history of benign breast disease, exposure to radiation while pregnant, and genetic factors

    Circulating Folate and Vitamin B12 and Risk of Prostate Cancer: A Collaborative Analysis of Individual Participant Data from Six Cohorts Including 6875 Cases and 8104 Controls.

    Get PDF
    BACKGROUND: Folate and vitamin B12 are essential for maintaining DNA integrity and may influence prostate cancer (PCa) risk, but the association with clinically relevant, advanced stage, and high-grade disease is unclear. OBJECTIVE: To investigate the associations between circulating folate and vitamin B12 concentrations and risk of PCa overall and by disease stage and grade. DESIGN, SETTING, AND PARTICIPANTS: A study was performed with a nested case-control design based on individual participant data from six cohort studies including 6875 cases and 8104 controls; blood collection from 1981 to 2008, and an average follow-up of 8.9 yr (standard deviation 7.3). Odds ratios (ORs) of incident PCa by study-specific fifths of circulating folate and vitamin B12 were calculated using multivariable adjusted conditional logistic regression. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Incident PCa and subtype by stage and grade. RESULTS AND LIMITATIONS: Higher folate and vitamin B12 concentrations were associated with a small increase in risk of PCa (ORs for the top vs bottom fifths were 1.13 [95% confidence interval (CI), 1.02-1.26], ptrend=0.018, for folate and 1.12 [95% CI, 1.01-1.25], ptrend=0.017, for vitamin B12), with no evidence of heterogeneity between studies. The association with folate varied by tumour grade (pheterogeneity0.05). Use of single blood-sample measurements of folate and B12 concentrations is a limitation. CONCLUSIONS: The association between higher folate concentration and risk of high-grade disease, not evident for low-grade disease, suggests a possible role for folate in the progression of clinically relevant PCa and warrants further investigation. PATIENT SUMMARY: Folate, a vitamin obtained from foods and supplements, is important for maintaining cell health. In this study, however, men with higher blood folate levels were at greater risk of high-grade (more aggressive) prostate cancer compared with men with lower folate levels. Further research is needed to investigate the possible role of folate in the progression of this disease

    Key steps for effective breast cancer prevention

    Get PDF
    • …
    corecore