37 research outputs found

    Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil)

    Get PDF
    International audienceThroughfall volumes and incident rainfall were measured between 23 August and 2 December 2004 as well as from 6 January to 15 April 2005 for individual rain events of differing intensities and magnitudes in an open tropical rainforest in Rondônia, Brazil. Temporal patterns of throughfall spatial variability were examined. Estimated interception was compared to modeled interception obtained by applying the revised Gash model in order to identify sources of throughfall variability in open tropical rainforests. Gross precipitation of 97 events amounted to 1309 mm, 89±5.6% (S.E.) of which reached the forest floor as throughfall. The redistribution of water within the canopy was highly variable in time, which we attribute to the high density of babassu palms (Orbignya phalerata), their seasonal leaf growth, and their conducive morphology. We identified a 10-min rainfall intensity threshold of 30 mmh-1 above which interception was highly variable. This variability is amplified by funneling and shading effects of palms. This interaction between a rainfall variable and vegetation characteristics is relevant for understanding the hydrology of all tropical rainforests with a high palm density

    Solute and sediment export from Amazon forest and soybean headwater streams

    Get PDF
    Author Posting. © Ecological Society of America, 2016. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 27 (2017): 193–207, doi:10.1002/eap.1428.Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO3−, PO43−, SO42−, Cl−, NH4+, Ca2+, Mg2+, Na+, K+, Al3+, Fe3+, and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ18O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K+ varied seasonally in streamwater, but only Fe3+ concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH4+, PO43−, Ca2+, Fe3+, Na+, SO42−, DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained low for all watersheds (<1 kg NO3− N·ha−1·yr−1, <2.1 kg NH4+-N·ha−1·yr−1, <0.2 kg PO43−-P·ha−1·yr−1, <1.5 kg Ca2+·ha−1·yr−1). Responses of both streamflows and solute concentrations to crop agriculture appear to be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths on deep soils, and the absence of nitrogen fertilization. To date, these factors have buffered streams from the large increases in solute concentrations that often accompany intensive croplands in other locations.NSF Grant Numbers: DEB-0640661, DEB-0949370; Fundação de Amparo á Pesquisa do Estado de São Paulo Grant Number: FAPESP 03/13172-2; Watson Graduate Student Fellowship; Center for Latin American and Caribbean Studies at Brown Universit

    Surprisingly modest water quality impacts from expansion and intensification of large-scale commercial agriculture in the Brazilian Amazon-Cerrado region

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tropical Conservation Science 10 (2017): 1-5, doi:10.1177/1940082917720669.Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single- and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single- and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices.The work described here was supported by National Science Foundation grants EF 1655432, IOS 1457662 and ICER 1342953 and grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo

    Runoff sources and land cover change in the Amazon : an end-member mixing analysis from small watersheds

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 105 (2011): 7-18, doi:10.1007/s10533-011-9597-8.The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end member mixing analysis (EMMA) to ten small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27 to 28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45 to 57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60 to 89% in pasture watersheds 100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.This work was supported by National Science Foundation (DEB-0315656, DEB-0640661), the NASA LBA Program (NCC5-686, NCC5-69, NCC5-705, NNG066E88A) and by grants from Brazilian agencies FAPESP (03/13172-2) and CNPq (20199/2005-5)

    A daily rainfall erosivity model for Western Amazonia

    No full text
    Rainfall erosivities as defined by the R factor from the universal soil loss equation were determined for all events during a two-year period at the station La Cuenca in western Amazonia. Three methods based on a power relationship between rainfall amount and erosivity were then applied to estimate event and daily rainfall erosivities from the respective rainfall amounts. A test of the resulting regression equations against an independent data set proved all three methods equally adequate in predicting rainfall erosivity from daily rainfall amount. We recommend the Richardson model for testing in the Amazon Basin, and its use with the coefficient from La Cuenca in western Amazonia

    Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using Random Forests analysis

    No full text
    Spatial estimates of tropical soil organic carbon (SOC) concentrations and stocks are crucial to understanding the role of tropical SOC in the global carbon cycle. They also allow for spatial variation of SOC in environmental process models. SOC is spatially highly variable. In traditional approaches, SOC concentrations and stocks have been derived from estimates for single or very few profiles and spatially linked to existing units of soil or vegetation maps. However, many existing soil profile data are incomplete and untested as to whether they are representative or unbiased. Also single means for soil or vegetation map units cannot characterize SOC spatial variability within these units. We here use the digital soil mapping approach to predict the spatial distribution of SOC. This relies on a soil inference model based on spatially referenced environmental layers of topographic attributes, soil units, parent material, and forest history. We sampled soils at 165 sites, stratified according to topography and lithology, on Barro Colorado Island (BCI), Panama, at depths of 0-10 cm, 10-20 cm, 20-30 cm, and 30-50 cm, and analyzed them for SOC by dry combustion. We applied Random Forest (RF) analysis as a modeling tool to the SOC data for each depth interval in order to compare vertical and lateral distribution patterns. RF has several advantages compared to other modeling approaches, for instance, the fact that it is neither sensitive to overfitting nor to noise features. The RF-based digital SOC mapping approach provided SOC estimates of high spatial resolution and estimates of error and predictor importance. The environmental variables that explained most of the variation in the topsoil (0-10 cm) were topographic attributes. In the subsoil (10-50 cm), SOC distribution was best explained by soil texture classes as derived from soil mapping units. The estimates for SOC stocks in the upper 30 cm ranged between 38 and 116 Mg ha- 1, with lowest stocks on midslope and highest on toeslope positions. This digital soil mapping approach can be applied to similar landscapes to refine the spatial resolution of SOC estimates. © 2008 Elsevier B.V. All rights reserved
    corecore