787 research outputs found

    Effect of Dispersions of Al2O3 on the Physical and Mechanical Properties of Pure Copper and Copper-Nickel Alloy

    Get PDF
    This paper illustrates the mechanical and physical properties of pure Cu and Cu-Ni (50-50 wt. %) alloy mixed with Al2O3 (1-4 wt. %) as micro-particles reinforcement materials. The attained composite alloy specimens\u27 characteristics were estimated such as microstructure, relative density, electrical and thermal conductivity, hardness, and compression yield stress properties to adjust the suitable optimum percentage of reinforcing material which has the best physical and mechanical properties with different main matrix materials whether pure Cu powder or Cu-Ni mechanical alloy. The micron-sized Al2O3 was added to enhance the mechanical and physical properties of the pure Cu and Cu-Ni alloy composites. The electrical and thermal conductivity for pure Cu alloy composites were improved compared to the copper-nickel alloy matrix composites material. The hardness and compression yield stress of pure copper has enhancement values and for Cu-Ni alloy composites have enhancement values and for Cu-Ni base composites, hardness and compression yield stress have improved with the most positive enhancement values

    Analysis of Implementation Methodologies of Deadbeat Direct-Torque and Flux Control (DB-DTFC) for IPMSMs in Stationary and Rotatory Reference Frames

    Get PDF
    Deadbeat-control is a well-established control technique that uses the inverse machine model to determine the voltage commands required to achieve the desired torque and flux commands. Its classic implementation requires solving a quadratic equation with an extensive number of terms. Moreover, it can be only solved in the dq-reference frame. In this paper, two novel implementations are presented. The first methodology, in the dq-reference frame, reduces the algorithm's complexity and computation time. Moreover, it is immune to estimation errors of the permanent magnet flux. A second methodology based on the flux vector orientation is also presented. As opposed to the classic implementation, the proposed method does not require solving a quadratic equation; this reduces its complexity and computation time. Furthermore, the proposed methodology can be solved both in the dq and aß frames since it relies only on the stator flux's magnitude and angle. Up to date and to the best of the author's knowledge, DB-DTFC in the stationary frame has not been presented before for salient machines. DB-DTFC in the stationary frame reduces the reliance on the position observer and facilitates the implementation of overmodulation techniques and six-step operation. The proposed methodology can operate in the MTPF line without any adjustments and it shows an adequate dynamic performance. Simulation and experimental results validate the methodologies. Caveats regarding their implementation are also discussed

    The Bismut-Elworthy-Li type formulae for stochastic differential equations with jumps

    Full text link
    Consider jump-type stochastic differential equations with the drift, diffusion and jump terms. Logarithmic derivatives of densities for the solution process are studied, and the Bismut-Elworthy-Li type formulae can be obtained under the uniformly elliptic condition on the coefficients of the diffusion and jump terms. Our approach is based upon the Kolmogorov backward equation by making full use of the Markovian property of the process.Comment: 29 pages, to appear in Journal of Theoretical Probabilit

    Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR+

    Get PDF
    Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D) model of hepcidin-25 with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others

    Adherence to Drug-Refill Is a Useful Early Warning Indicator of Virologic and Immunologic Failure among HIV Patients on First-Line ART in South Africa

    Get PDF
    Affordable strategies to prevent treatment failure on first-line regimens among HIV patients are essential for the long-term success of antiretroviral therapy (ART) in sub-Saharan Africa. WHO recommends using routinely collected data such as adherence to drug-refill visits as early warning indicators. We examined the association between adherence to drug-refill visits and long-term virologic and immunologic failure among non-nucleoside reverse transcriptase inhibitor (NNRTI) recipients in South Africa.In 2008, 456 patients on NNRTI-based ART for a median of 44 months (range 12-99 months; 1,510 person-years) were enrolled in a retrospective cohort study in Soweto. Charts were reviewed for clinical characteristics before and during ART. Multivariable logistic regression and Kaplan-Meier survival analysis assessed associations with virologic (two repeated VL>50 copies/ml) and immunologic failure (as defined by WHO).After a median of 15 months on ART, 19% (n = 88) and 19% (n = 87) had failed virologically and immunologically respectively. A cumulative adherence of <95% to drug-refill visits was significantly associated with both virologic and immunologic failure (p<0.01). In the final multivariable model, risk factors for virologic failure were incomplete adherence (OR 2.8, 95%CI 1.2-6.7), and previous exposure to single-dose nevirapine or any other antiretrovirals (adj. OR 2.1, 95%CI 1.2-3.9), adjusted for age and sex. In Kaplan-Meier analysis, the virologic failure rate by month 48 was 19% vs. 37% among adherent and non-adherent patients respectively (logrank p value = 0.02).One in five failed virologically after a median of 15 months on ART. Adherence to drug-refill visits works as an early warning indicator for both virologic and immunologic failure

    Cu, Fe, and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy

    Get PDF
    Acknowledgments—A.H.E-K thanks Maren Koenig and Dorit Becker for their support in sample preparation. The authors thank Prof. Gernot Riedel, Dr Silke Frahm, and Mandy Magbagbeolu for help with mouse perfusion and harvesting of the brain tissues. Funding and additional information—This work was carried out in the context of the EMPIR research project 15HLT02 (ReMiND). This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union’s Horizon 2020 research and innovation program.Peer reviewedPublisher PD

    Root uptake and metabolization of Alternaria toxins by winter wheat plants using a hydroponic system

    Get PDF
    Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil–plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC–MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants
    corecore