50 research outputs found

    Comparative study of the stability of bimatoprost 0.03% and latanoprost 0.005%: A patient-use study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The stability of ophthalmic preparations in multidose containers is influenced by the preservative as well as the stability of the active ingredient. Unstable drugs may require refrigeration to preserve their active ingredient level and they are more likely to degrade over time, therefore becoming more susceptible to degradation based on patient mishandling. The purpose of this study was to determine the degree of molecular degradation that occurs in bimatoprost and latanoprost in a patient-use setting.</p> <p>Methods</p> <p>This was an open-label, laboratory evaluation of the relative stability of bimatoprost and latanoprost. Patients presently using bimatoprost (n = 31) or latanoprost (n = 34) were identified at 2 clinical sites in Brazil. Patients were instructed to use and store their drops as usual and return all used medication bottles between day 28 and day 34 after opening.</p> <p>Results</p> <p>Bimatoprost demonstrated no degradation, but latanoprost degraded at various levels. The mean age of bimatoprost was 43.0 ± 3.4 days and the mean age of latanoprost was 43.9 ± 2.8 days (P = .072). The mean percentage of labeled concentration was 103.7% in the bimatoprost bottles and 88.1% in the latanoprost bottles (P < 001).</p> <p>Conclusion</p> <p>This study showed that bimatoprost maintained ≥100% concentration throughout the study period while latanoprost did not.</p

    24-h Efficacy of Glaucoma Treatment Options

    Full text link

    Bilateral Deepening of Upper Lid Sulcus From Topical Bimatoprost Therapy

    No full text

    Efficient Implementations of the Quadrature-Free Discontinuous Galerkin-Method

    No full text
    The efficiency of the quadrature-free form of the discontinuous Galerkin method in two dimensions, and briefly in three dimensions, is examined. Most of the work for constant-coefficient, linear problems involves the volume and edge integrations, and the transformation of information from the volume to the edges. These operations can be viewed as matrix-vector multiplications. Many of the matrices are sparse as a result of symmetry, and blocking and specialized multiplication routines are used to account for the sparsity. By optimizing these operations, a 35% reduction in total CPU time is achieved. For nonlinear problems, the calculation of the flux becomes dominant because of the cost associated with polynomial products and inversion. This component of the work can be reduced by up to 75% when the products are approximated by truncating terms. Because the cost is high for nonlinear problems on general elements, it is suggested that simplified physics and the most efficient elementtypes be use..
    corecore