194 research outputs found
Investigation of -dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy
We use time-resolved X-Photon Correlation Spectroscopy to investigate the
slow dynamics of colloidal gels made of moderately attractive carbon black
particles. We show that the slow dynamics is temporally heterogeneous and
quantify its fluctuations by measuring the variance of the instantaneous
intensity correlation function. The amplitude of dynamical fluctuations has a
non-monotonic dependence on scattering vector , in stark contrast with
recent experiments on strongly attractive colloidal gels [Duri and Cipelletti,
\textit{Europhys. Lett.} \textbf{76}, 972 (2006)]. We propose a simple scaling
argument for the -dependence of fluctuations in glassy systems that
rationalizes these findings.Comment: Final version published in PR
-Scale Decoupling of the Mechanical Relaxation and Diverging Shear Wave Propagation Lengthscale in Triphenylphosphite
We have performed depolarized Impulsive Stimulated Scattering experiments to
observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from
10 - 500 MHz. These measurements, in tandem with previously performed
longitudinal and shear measurements, permit further analyses of the relaxation
dynamics of TPP within the framework of the mode coupling theory (MCT). Our
results provide evidence of coupling between the shear and
longitudinal degrees of freedom up to a decoupling temperature = 231 K. A
lower bound length scale of shear wave propagation in liquids verified the
exponent predicted by theory in the vicinity of the decoupling temperature
Ergodicity and Slowing Down in Glass-Forming Systems with Soft Potentials: No Finite-Temperature Singularities
The aim of this paper is to discuss some basic notions regarding generic
glass forming systems composed of particles interacting via soft potentials.
Excluding explicitly hard-core interaction we discuss the so called `glass
transition' in which super-cooled amorphous state is formed, accompanied with a
spectacular slowing down of relaxation to equilibrium, when the temperature is
changed over a relatively small interval. Using the classical example of a
50-50 binary liquid of N particles with different interaction length-scales we
show that (i) the system remains ergodic at all temperatures. (ii) the number
of topologically distinct configurations can be computed, is temperature
independent, and is exponential in N. (iii) Any two configurations in phase
space can be connected using elementary moves whose number is polynomially
bounded in N, showing that the graph of configurations has the `small world'
property. (iv) The entropy of the system can be estimated at any temperature
(or energy), and there is no Kauzmann crisis at any positive temperature. (v)
The mechanism for the super-Arrhenius temperature dependence of the relaxation
time is explained, connecting it to an entropic squeeze at the glass
transition. (vi) There is no Vogel-Fulcher crisis at any finite temperature T>0Comment: 10 pages, 9 figures, submitted to PR
Mean field theory of hard sphere glasses and jamming
Hard spheres are ubiquitous in condensed matter: they have been used as
models for liquids, crystals, colloidal systems, granular systems, and powders.
Packings of hard spheres are of even wider interest, as they are related to
important problems in information theory, such as digitalization of signals,
error correcting codes, and optimization problems. In three dimensions the
densest packing of identical hard spheres has been proven to be the FCC
lattice, and it is conjectured that the closest packing is ordered (a regular
lattice, e.g, a crystal) in low enough dimension. Still, amorphous packings
have attracted a lot of interest, because for polydisperse colloids and
granular materials the crystalline state is not obtained in experiments for
kinetic reasons. We review here a theory of amorphous packings, and more
generally glassy states, of hard spheres that is based on the replica method:
this theory gives predictions on the structure and thermodynamics of these
states. In dimensions between two and six these predictions can be successfully
compared with numerical simulations. We will also discuss the limit of large
dimension where an exact solution is possible. Some of the results we present
here have been already published, but others are original: in particular we
improved the discussion of the large dimension limit and we obtained new
results on the correlation function and the contact force distribution in three
dimensions. We also try here to clarify the main assumptions that are beyond
our theory and in particular the relation between our static computation and
the dynamical procedures used to construct amorphous packings.Comment: 59 pages, 25 figures. Final version published on Rev.Mod.Phy
Confinement effects on glass forming liquids probed by DMA
Many molecular glass forming liquids show a shift of the glass transition T-g
to lower temperatures when the liquid is confined into mesoporous host
matrices. Two contrary explanations for this effect are given in literature:
First, confinement induced acceleration of the dynamics of the molecules leads
to an effective downshift of T-g increasing with decreasing pore size. Second,
due to thermal mismatch between the liquid and the surrounding host matrix,
negative pressure develops inside the pores with decreasing temperature, which
also shifts T-g to lower temperatures. Here we present dynamic mechanical
analysis measurements of the glass forming liquid salol in Vycor and Gelsil
with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic
susceptibility data can be consistently described with the assumption of two
relaxation processes inside the pores: A surface induced slowed down relaxation
due to interaction with rough pore interfaces and a second relaxation within
the core of the pores. This core relaxation time is reduced with decreasing
pore size d, leading to a downshift of T-g proportional to 1/d in perfect
agreement with recent differential scanning calorimetry (DSC) measurements.
Thermal expansion measurements of empty and salol filled mesoporous samples
revealed that the contribution of negative pressure to the downshift of T-g is
small (<30%) and the main effect is due to the suppression of dynamically
correlated regions of size xi when the pore size xi approaches
Topologically disordered systems at the glass transition
The thermodynamic approach to the viscosity and fragility of amorphous oxides was used to determine the topological characteristics of the disordered network-forming systems. Instead of the disordered system of atoms we considered the congruent disordered system of interconnecting bonds. The Gibbs free energy of network-breaking defects (configurons) was found based on available viscosity data. Amorphous silica and germania were used as reference disordered systems for which we found an excellent agreement of calculated and measured glass transition temperatures. We reveal that the Hausdorff dimension of the system of bonds changes from Euclidian three-dimensional below to fractal 2.55 ± 0.05-dimensional geometry above the glass transition temperature
Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics
This paper is the fifth in a series exploring the physical consequences of
the solidity of glass-forming liquids. Paper IV proposed a model where the
density field is described by a time-dependent Ginzburg-Landau equation of the
nonconserved type with rates in space of the form . The
model assumes that where is the average intermolecular
distance; this inequality expresses a long-wavelength dominance of the dynamics
which implies that the Hamiltonian (free energy) to a good approximation may be
taken to be ultralocal. In the present paper we argue that this is the simplest
model consistent with the following three experimental facts: 1) Viscous
liquids approaching the glass transition do not develop long-range order; 2)
The glass has lower compressibility than the liquid; 3) The alpha process
involves several decades of relaxation times shorter than the mean relaxation
time. The paper proceeds to list six further experimental facts characterizing
equilibrium viscous liquid dynamics and shows that these are readily understood
in terms of the model; some are direct consequences, others are quite natural
when viewed in light of the model
Non-Arrhenius Behavior of Secondary Relaxation in Supercooled Liquids
Dielectric relaxation spectroscopy (1 Hz - 20 GHz) has been performed on
supercooled glass-formers from the temperature of glass transition (T_g) up to
that of melting. Precise measurements particularly in the frequencies of
MHz-order have revealed that the temperature dependences of secondary
beta-relaxation times deviate from the Arrhenius relation in well above T_g.
Consequently, our results indicate that the beta-process merges into the
primary alpha-mode around the melting temperature, and not at the dynamical
transition point T which is approximately equal to 1.2 T_g.Comment: 4 pages, 4 figures, revtex
Agro-materials : a bibliographic review
Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the âplasticâ properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed
- âŠ