743 research outputs found

    Tectonic setting of Martian volcanoes and deep-seated intrusives

    Get PDF
    More than 50 volcanoes have been mapped on Mars, and recent geologic studies indicate structural evidence of deep seated intrusive bodies. Most volcanoes in the Tharsis region are volcanotectonic features; they have been associated with large scale tectonic and volcanic processes. They occur along complex systems of faults and grabens having a dominant northwest to southwest trend closely coincident with a great circle, which extends along 90 deg of arc from Tempe Patera to probable volcanic mountains near lat. 40 deg S, long. 150 deg. Deep seated intrusive bodies are also concentrated in the Tharsis region and are recognized mostly where faults have been deflected around their cores. The Elysium Mons-Amphitrites Patera volcanic alignment is subparallel to that of Tharsis but is longer, extending through about 120 deg of arc; it transects the dichotomy boundary and is radial to the Hellas basin. Volcanoes in the Tharsis region have the widest age range of all volcanoes on Mars, as determined by the size-frequency distribution of their craters having diameters of 2, 5, and 16 km

    Paleolakes and lacustrine basins on Mars

    Get PDF
    The problems of how warm and wet Mars once was and when climate transitions may have occurred are not well understood. Mars may have had an early environment similar to Earth's that was conducive to the emergence of life. In addition, increasing geologic evidence indicates that water, upon which terrestrial life depends, has been present on Mars throughout its history. This evidence does not detract from the possibility that life may have originated on early Mars, but rather suggests that life could have developed over longer periods of time in longer lasting, more clement local environments than previously envisioned. It is suggested herein that such environments may have been provided by paleolakes, located mostly in the northern lowlands and probably ice covered. Such lakes probably would have had diverse origins. Glacial lakes may have occupied ice eroded hollows or formed in valleys obstructed by moraines or ice barriers. Unlike Earth, the Martian record of the origin and evolution of possible life may have not been erased by extensive deformation of the surface. Thus the basins that may have contained the paleolakes are potential sites for future biological, geological, and climatological study

    Critical free energy and Casimir forces in rectangular geometries

    Full text link
    We study the critical behavior of the free energy and the thermodynamic Casimir force in a Ld1×LL_\parallel^{d-1} \times L block geometry in 2<d<42<d<4 dimensions with aspect ratio ρ=L/L\rho=L/L_\parallel above, at, and below TcT_c on the basis of the O(n)(n) symmetric ϕ4\phi^4 lattice model with periodic boundary conditions (b.c.). We consider a simple-cubic lattice with isotropic short-range interactions. Exact results are derived in the large - nn limit describing the geometric crossover from film (ρ=0\rho =0) over cubic ρ=1\rho=1 to cylindrical (ρ=\rho = \infty) geometries. For n=1n=1, three perturbation approaches are presented that cover both the central finite-size regime near TcT_c for 1/4ρ31/4 \lesssim \rho \lesssim 3 and the region outside the central finite-size regime well above and below TcT_c for arbitrary ρ\rho. At bulk TcT_c of isotropic systems with periodic b.c., we predict the critical Casimir force in the vertical (L)(L) direction to be negative (attractive) for a slab (ρ1\rho 1), and zero for a cube (ρ=1)(\rho=1). We also present extrapolations to the cylinder limit (ρ=\rho=\infty) and to the film limit (ρ=0\rho=0) for n=1n=1 and d=3d=3. Our analytic results for finite-size scaling functions in the minimal renormalization scheme at fixed dimension d=3d=3 agree well with Monte Carlo data for the three-dimensional Ising model by Hasenbusch for ρ=1\rho=1 and by Vasilyev et al. for ρ=1/6\rho=1/6 above, at, and below TcT_c.Comment: 23 pages, 14 figure

    Five-loop additive renormalization in the phi^4 theory and amplitude functions of the minimally renormalized specific heat in three dimensions

    Full text link
    We present an analytic five-loop calculation for the additive renormalization constant A(u,epsilon) and the associated renormalization-group function B(u) of the specific heat of the O(n) symmetric phi^4 theory within the minimal subtraction scheme. We show that this calculation does not require new five-loop integrations but can be performed on the basis of the previous five-loop calculation of the four-point vertex function combined with an appropriate identification of symmetry factors of vacuum diagrams. We also determine the amplitude functions of the specific heat in three dimensions for n=1,2,3 above T_c and for n=1 below T_c up to five-loop order. Accurate results are obtained from Borel resummations of B(u) for n=1,2,3 and of the amplitude functions for n=1. Previous conjectures regarding the smallness of the resummed higher-order contributions are confirmed. Borel resummed universal amplitude ratios A^+/A^- and a_c^+/a_c^- are calculated for n=1.Comment: 30 pages REVTeX, 3 PostScript figures, submitted to Phys. Rev.

    Geologic controls of erosion and sedimentation on Mars

    Get PDF
    Because Mars has had a history of diverse erosional and depositional styles, a variety of erosional landforms and sedimentary deposits can be seen on Viking orbiter images. Here we review how geologic processes involving rock, water, and structure have controlled erosion and sedimentation on Mars. Additionally, we review how further studies will help refine our understanding of these processes

    Singularity in the boundary resistance between superfluid 4^4He and a solid surface

    Full text link
    We report new measurements in four cells of the thermal boundary resistance RR between copper and 4^4He below but near the superfluid-transition temperature TλT_\lambda. For 107t1T/Tλ10410^{-7} \leq t \equiv 1 - T/T_\lambda \leq 10^{-4} fits of R=R0txb+B0R = R_0 t^{x_b} + B_0 to the data yielded xb0.18x_b \simeq 0.18, whereas a fit to theoretical values based on the renormalization-group theory yielded xb=0.23x_b = 0.23. Alternatively, a good fit of the theory to the data could be obtained if the {\it amplitude} of the prediction was reduced by a factor close to two. The results raise the question whether the boundary conditions used in the theory should be modified.Comment: 4 pages, 4 figures, revte

    Dwarf galaxies beyond our doorstep: the Centaurus A group

    Get PDF
    The study of dwarf galaxies in groups is a powerful tool for investigating galaxy evolution, chemical enrichment and environmental effects on these objects. Here we present results obtained for dwarf galaxies in the Centaurus A complex, a dense nearby (~4 Mpc) group that contains two giant galaxies and about 30 dwarf companions of different morphologies and stellar contents. We use archival optical (HST/ACS) and near-infrared (VLT/ISAAC) data to derive physical properties and evolutionary histories from the resolved stellar populations of these dwarf galaxies. In particular, for early-type dwarfs we are able to construct metallicity distribution functions, find population gradients and quantify the intermediate-age star formation episodes. For late-type dwarfs, we compute recent (~1 Gyr) star formation histories and study their stellar distribution. We then compare these results with properties of the dwarfs in our Milky Way and in other groups. Our work will ultimately lead to a better understanding of the evolution of dwarf galaxies.Comment: 6 pages, 5 figures; to appear in the proceedings of the conference "A Universe of dwarf galaxies" (Lyon, June 14-18, 2010

    Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming

    Get PDF
    Small nucleolar and small Cajal body RNAs (snoRNAs and scaRNAs) of the H/ACA box and C/D box type are generated by exonucleolytic shortening of longer precursors. Removal of the last few nucleotides at the 3' end is known to be a distinct step. We report that, in human cells, knock-down of the poly(A) specific ribonuclease (PARN), previously implicated only in mRNA metabolism, causes the accumulation of oligoadenylated processing intermediates of H/ACA box but not C/D box RNAs. In agreement with a role of PARN in snoRNA and scaRNA processing, the enzyme is concentrated in nucleoli and Cajal bodies. Oligo(A) tails are attached to a short stub of intron sequence remaining beyond the mature 3' end of the snoRNAs. The noncanonical poly(A) polymerase PAPD5 is responsible for addition of the oligo(A) tails. We suggest that deadenylation is coupled to clean 3' end trimming, which might serve to enhance snoRNA stability
    corecore