845 research outputs found

    A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid

    Get PDF
    Guided by a series of discriminating rheometric tests, we develop a new constitutive model that can quantitatively predict the key rheological features of waxy crude oils. We first develop a series of model crude oils, which are characterized by a complex thixotropic and yielding behavior that strongly depends on the shear history of the sample. We then outline the development of an appropriate preparation protocol for carrying out rheological measurements, to ensure consistent and reproducible initial conditions. We use RheoPIV measurements of the local kinematics within the fluid under imposed deformations in order to validate the selection of a particular protocol. Velocimetric measurements are also used to document the presence of material instabilities within the model crude oil under conditions of imposed steady shearing. These instabilities are a result of the underlying non-monotonic steady flow curve of the material. Three distinct deformation histories are then used to probe the material's constitutive response. These deformations are steady shear, transient response to startup of steady shear with different aging times, and large amplitude oscillatory shear (LAOS). The material response to these three different flows is used to motivate the development of an appropriate constitutive model. This model (termed the IKH model) is based on a framework adopted from plasticity theory and implements an additive strain decomposition into characteristic reversible (elastic) and irreversible (plastic) contributions, coupled with the physical processes of isotropic and kinematic hardening. Comparisons of experimental to simulated response for all three flows show good quantitative agreement, validating the chosen approach for developing constitutive models for this class of materials.Chevron Corporatio

    Neural Correlates of Social Behavior in Mushroom Body Extrinsic Neurons of the Honeybee Apis mellifera

    Get PDF
    The social behavior of honeybees (Apis mellifera) has been extensively investigated, but little is known about its neuronal correlates. We developed a method that allowed us to record extracellularly from mushroom body extrinsic neurons (MB ENs) in a freely moving bee within a small but functioning mini colony of approximately 1,000 bees. This study aimed to correlate the neuronal activity of multimodal high-order MB ENs with social behavior in a close to natural setting. The behavior of all bees in the colony was video recorded. The behavior of the recorded animal was compared with other hive mates and no significant differences were found. Changes in the spike rate appeared before, during or after social interactions. The time window of the strongest effect on spike rate changes ranged from 1 s to 2 s before and after the interaction, depending on the individual animal and recorded neuron. The highest spike rates occurred when the experimental animal was situated close to a hive mate. The variance of the spike rates was analyzed as a proxy for high order multi-unit processing. Comparing randomly selected time windows with those in which the recorded animal performed social interactions showed a significantly increased spike rate variance during social interactions. The experimental set-up employed for this study offers a powerful opportunity to correlate neuronal activity with intrinsically motivated behavior of socially interacting animals. We conclude that the recorded MB ENs are potentially involved in initiating and controlling social interactions in honeybees

    Spatiotemporal dynamics of multiple shear-banding events for viscoelastic micellar fluids in cone-plate shearing flows

    Get PDF
    We characterize the transient response of semi-dilute wormlike micellar solutions under an imposed steady shear flow in a cone-plate geometry. By combining conventional rheometry with 2-D Particle Image Velocimetry (PIV), we can simultaneously correlate the temporal stress response with time-resolved velocimetric measurements. By imposing a well defined shear history protocol, consisting of a stepped shear flow sweep, we explore both the linear and nonlinear responses of two surfactant solutions: cetylpiridinium chloride (CPyCl) and sodium salicylate (NaSal) mixtures at concentrations of [66:40] mM and [100:60] mM, respectively. The transient stress signal of the more dilute solution relaxes to its equilibrium value very fast and the corresponding velocity profiles remain linear, even in the strongly shear-thinning regime. The more concentrated solution also exhibits linear velocity profiles at small shear rates. At large enough shear rates, typically larger than the inverse of the relaxation time of the fluid, the flow field reorganizes giving rise to strongly shear-banded velocity profiles. These are composed of an odd number of shear bands with low-shear-rate bands adjacent to both gap boundaries. In the non-linear regime long transients (much longer than the relaxation time of the fluid) are observed in the transient stress response before the fluid reaches a final, fully-developed state. The temporal evolution in the shear stress can be correlated with the spatiotemporal dynamics of the multiple shear-banded structure measured using RheoPIV. In particular our experiments show the onset of elastic instabilities in the flow which are characterized by the presence of multiple shear bands that evolve and rearrange in time resulting in a slow increase in the average torque acting on the rotating fixture

    The role of fractional exhaled nitric oxide in the assessment of athletes reporting exertional dyspnoea

    Get PDF
    Background: Exercise-induced bronchoconstriction (EIB) is a common cause of breathing difficulty in athletes. Fractional exhaled nitric oxide (FeNO) is an indirect marker of airway inflammation, recommended for the assessment and management of asthma; however, the role of FeNO in detecting and monitoring EIB has yet to be fully established. The aim of this study was therefore to evaluate the predictive value of FeNO to confirm or refute EIB in athletes presenting with exertional dyspnoea. Method: Seventy athletes (male: n = 45) (age: 35 ± 11 years) reporting respiratory symptoms (i.e. wheeze, cough and dyspnoea) during exercise attended the laboratory on a single occasion. All athletes performed resting FeNO and spirometry pre-and-post a eucapnic voluntary hyperpnoea challenge (EVH) in accordance with international guidelines. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for established FeNO thresholds: (intermediate [≥25ppb] and high [>50ppb]) and evaluated against objective evidence of EIB: (EVH diagnostic cut-off [-10% ΔFEV1 at two consecutive time-points] and [-15% ΔFEV1 at one time-point]). The diagnostic accuracy of FeNO was calculated using receiver operating characteristics area under the curve (ROC-AUC). Results: All had normal resting lung function (>80% FEV1 pred). The prevalence of EIB was 33% (-10% ΔFEV1) and 23% (-15% ΔFEV1) (median (IQR) ΔFEV1 = -7% (10.02)). FeNO values ≥25ppb and >50ppb were observed in 49% and 23% of the cohort, respectively. ROC-AUC for FeNO was 75% (-10% ΔFEV1) and 86% (-15% ΔFEV1). Sensitivity, specificity, PPV and NPV are presented in Table 1. Conclusion: Our findings indicate that FeNO >50ppb provides good specificity for a positive EVH test; however, should not replace indirect bronchoprovocation for diagnostic purposes. The high proportion of athletes reporting breathing difficulty in the absence of EIB highlights the requirement to consider alternative causes of exertional dyspnoea during clinical work-up

    Accessibility-based reranking in multimedia search engines

    Get PDF
    Traditional multimedia search engines retrieve results based mostly on the query submitted by the user, or using a log of previous searches to provide personalized results, while not considering the accessibility of the results for users with vision or other types of impairments. In this paper, a novel approach is presented which incorporates the accessibility of images for users with various vision impairments, such as color blindness, cataract and glaucoma, in order to rerank the results of an image search engine. The accessibility of individual images is measured through the use of vision simulation filters. Multi-objective optimization techniques utilizing the image accessibility scores are used to handle users with multiple vision impairments, while the impairment profile of a specific user is used to select one from the Pareto-optimal solutions. The proposed approach has been tested with two image datasets, using both simulated and real impaired users, and the results verify its applicability. Although the proposed method has been used for vision accessibility-based reranking, it can also be extended for other types of personalization context

    Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions

    Get PDF
    Using self-designed particle visualization instrumentation, startup shear and step-strain tests were conducted under a series of systematically varied rheological and geometrical conditions, and the velocity profiles in three different well-entangled polybutadiene/oligomer solutions were obtained. For startup shear tests, in the regime of entanglement densities up to 89 and nominal reptation Weissenberg numbers up to 18.6, we generally observe either wall slip and a linear velocity/strain profile or simply the linear profile with no wall slip unless a massive edge fracture or instability has occurred in the sample. Meanwhile, step-strain tests conducted at similar and higher step Weissenberg numbers revealed little particle motion upon cessation. These results lead us to a conclusion that there is no compelling evidence of shear banding or nonquiescent relaxation in the range of entanglement density and Wi investigated; we interpret the results to imply that any observed banding probably correlates with edge effects.National Science Foundation (U.S.) (Grant DMR-0934305

    Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)

    Get PDF
    Large amplitude oscillatory shear (LAOS) is used as a tool to probe the nonlinear rheological response of a model elasto-viscoplastic material (a Carbopol microgel). In contrast to most recent studies, these large amplitude measurements are carried out in a stress-controlled manner. We outline a descriptive framework of characterization measures for nonlinear rheology under stress-controlled LAOS, and this is contrasted experimentally to the strain-controlled framework that is more commonly used. We show that this stress-controlled methodology allows for a physically intuitive interpretation of the yielding behavior of elasto-viscoplastic materials. The insight gained into the material behavior through these nonlinear measures is then used to develop two constitutive models that prescribe the rheological response of the Carbopol microgel. We show that these two successively more sophisticated constitutive models, which are based on the idea of strain decomposition, capture in a compact manner the important features of the nonlinear rheology of the microgel. The second constitutive model, which incorporates the concept of kinematic hardening, embodies all of the essential behaviors exhibited by Carbopol. These include elasto-viscoplastic creep and time-dependent viscosity plateaus below a critical stress, a viscosity bifurcation at the critical stress, and Herschel–Bulkley flow behavior at large stresses
    • …
    corecore