3,794 research outputs found
Acute neuroinflammation induces AIS structural plasticity in a NOX2-dependent manner
Background Chronic microglia-mediated inflammation and oxidative stress are well-characterized underlying factors in neurodegenerative disease, whereby reactive inflammatory microglia enhance ROS production and impact neuronal integrity. Recently, it has been shown that during chronic inflammation, neuronal integrity is compromised through targeted disruption of the axon initial segment (AIS), the axonal domain critical for action potential initiation. AIS disruption was associated with contact by reactive inflammatory microglia which wrap around the AIS, increasing association with disease progression. While it is clear that chronic microglial inflammation and enhanced ROS production impact neuronal integrity, little is known about how acute microglial inflammation influences AIS stability. Here, we demonstrate that acute neuroinflammation induces AIS structural plasticity in a ROS-mediated and calpain-dependent manner. Methods C57BL/6J and NOX2−/− mice were given a single injection of lipopolysaccharide (LPS; 5 mg/kg) or vehicle (0.9% saline, 10 mL/kg) and analyzed at 6 h–2 weeks post-injection. Anti-inflammatory Didox (250 mg/kg) or vehicle (0.9% saline, 10 mL/kg) was administered beginning 24 h post-LPS injection and continued for 5 days; animals were analyzed 1 week post-injection. Microglial inflammation was assessed using immunohistochemistry (IHC) and RT-qPCR, and AIS integrity was quantitatively analyzed using ankyrinG immunolabeling. Data were statistically compared by one-way or two-way ANOVA where mean differences were significant as assessed using Tukey’s post hoc analysis. Results LPS-induced neuroinflammation, characterized by enhanced microglial inflammation and increased expression of ROS-producing enzymes, altered AIS protein clustering. Importantly, inflammation-induced AIS changes were reversed following resolution of microglial inflammation. Modulation of the inflammatory response using anti-inflammatory Didox, even after significant AIS disruption occurred, increased the rate of AIS recovery. qPCR and IHC analysis revealed that expression of microglial NOX2, a ROS-producing enzyme, was significantly increased correlating with AIS disruption. Furthermore, ablation of NOX2 prevented inflammation-induced AIS plasticity, suggesting that ROS drive AIS structural plasticity. Conclusions In the presence of acute microglial inflammation, the AIS undergoes an adaptive change that is capable of spontaneous recovery. Moreover, recovery can be therapeutically accelerated. Together, these findings underscore the dynamic capabilities of this domain in the presence of a pathological insult and provide evidence that the AIS is a viable therapeutic target
Epidemiology of coagulase-negative staphylococci intramammary infection in dairy cattle and the effect of bacteriological culture misclassification
The effect of vacuum polarisation on muon-proton scattering at small energies and angles
We give a compact expression for the unpolarised differential cross section
for muon-proton scattering in the one photon exchange approximation. The effect
of adding the vacuum polarisation amplitude to the no-spin-flip amplitude for
one photon exchange is calculated at small energies and scattering angles and
is found to be negligible for present experiments.Comment: 6 pages, one figur
Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after SpinalCord Injury
Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs, and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI
Escape Behavior of Quantum Two-Particle Systems with Coulomb Interactions
Quantum escapes of two particles with Coulomb interactions from a confined
one-dimensional region to a semi-infinite lead are discussed by the probability
of particles remaining in the confined region, i.e. the survival probability,
in comparison with one or two free particles. For free-particle systems the
survival probability decays asymptotically in power as a function of time. On
the other hand, for two-particle systems with Coulomb interactions it shows an
exponential decay in time. A difference of escape behaviors between Bosons and
Fermions is considered as quantum effects of identical two particles such as
the Pauli exclusion principle. The exponential decay in the survival
probability of interacting two particles is also discussed in a viewpoint of
quantum chaos based on a distribution of energy level spacings.Comment: 10 pages, 7 figure
COMPTEL solar flare observations
COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties
HC4 The Potential Impact Of Recommendations Made Through The Common Drug Review Program At The Canadian Agency For Drugs And Technologies In Health
A full-length cDNA clone specifying the nuclear-encoded subunit VIb of human cytochrome c oxidase (COX) was isolated from a human skeletal muscle cDNA expression library. This was done with antiserum directed against the group of subunits VIa, b and c of bovine heart COX. A potential ribosome-binding site was located immediately upstream from the initiation codon. The predicted amino acid sequence revealed 85% similarity with the corresponding subunit of bovine heart COX. Subunit VIb lacks a cleavable presequence for mitochondrial addressing. We assume that there are no tissue-specific isoforms of subunit VIb, since (i) in a Northern blot experiment a single hybridizing band of approx. 500 nucleotides was demonstrated in RNA from liver, skeletal muscle, MOLT-4 cells and fibroblasts and (ii) a full-length cDNA clone with an identical sequence was isolated from a human liver cDNA library. Steady-state levels of the coxVIb transcript were different in the tissues examined
Batch fecundity and an attempt to estimate spawning frequency of king mackerel (Scomberomorus cavalla) in U.S. waters
Source Dimensions in Ultrarelativistic Heavy Ion Collisions
Recent experiments on pion correlations, interpreted as interferometric
measurements of the collision zone, are compared with models that distinguish a
prehadronic phase and a hadronic phase. The models include prehadronic
longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and
rescattering of the produced hadrons. We find that the longitudinal and outward
radii are surprisingly sensitive to the algorithm used for two-body collisions.
The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a
heavy target requires the existence of a prehadronic phase which converts to
the hadronic phase at densities around 0.8-1.0 GeV/fm. The transverse radii
cannot be reproduced without introducing more complex dynamics into the
transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major
change is an additional discussion of the classical two-body collision
algorithm, a (compressed) postscript file of the complete paper including
figures can be obtained from Authors or via anonymous ftp at
ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.
Interference scheme to measure light-induced nonlinearities in Bose-Einstein condensates
Light-induced nonlinear terms in the Gross-Pitaevskii equation arise from the
stimulated coherent exchange of photons between two atoms. For atoms in an
optical dipole trap this effect depends on the spatial profile of the trapping
laser beam. Two different laser beams can induce the same trapping potential
but very different nonlinearities. We propose a scheme to measure light-induced
nonlinearities which is based on this observation.Comment: 2 figure
- …
