2,522 research outputs found

    Competitive adsorption of phenolic compounds from aqueous solution using sludge‐based activated carbon.

    Get PDF
    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge‐based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p‐nitrophenol, p‐chlorophenol, p‐hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single‐solute isotherms. Moreover, the Langmuir–Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi‐solute system was in the following order: p‐nitrophenol > p‐chlorophenol > PHBA > phenol

    Dynamic modeling of three-phase upflow fixed-bed reactor including pore diffusion

    Get PDF
    The dynamics of a three-phase upflow fixed-bed reactor are investigated using a non-isothermal heterogeneous model including gas–liquid and liquid–solid mass transfer and diffusion/reaction phenomena inside the catalyst. The partial differential and algebraic equations involving three integration variables (time and two space coordinates) are solved via discretization of the spatial coordinates coupled with the Gear method. For a multistep hydrogenation on a shell catalyst, the model exhibits significant effects of the external and above all internal resistance to hydrogen transfer but also non-trivial internal hydrocarbons concentration profiles. A simplified model is compared with the extended one and with experimental data in transient regime. In the investigated conditions—hydrocarbons in large excess—the diffusion of hydrocarbons appears to be actually not limiting, so that the simplest model predicts accurately the transient reactor behavior

    Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-

    Full text link
    Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na de-intercalation from alpha-NaCoO2 and by the floating-zone method, respectively. It has been found that successive phase transitions take place at temperatures Tc1 and Tc2 in both systems. The appearance of the internal magnetic field at Tc1 with decreasing temperature T indicates that the antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined from the data taken for magnetically ordered state are similar to those of gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the CoO2 layers between these systems do not significantly affect their physical properties. For gamma-K0.5CoO2, the quantitative difference of the physical quantities are found from those of beta- and gamma-Na0.5CoO2. The difference between the values of Tci (i = 1 and 2) of these systems might be explained by considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl

    Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2

    Full text link
    The determination by powder neutron diffraction of the ambient temperature crystal structures of compounds in the NaxCoO2 family, for 0.3 < x <= 1.0, is reported. The structures consist of triangular CoO2 layers with Na ions distributed in intervening charge reservoir layers. The shapes of the CoO6 octahedra that make up the CoO2 layers are found to be critically dependent on the electron count and on the distribution of the Na ions in the intervening layers, where two types of Na sites are available. Correlation of the shapes of cobalt-oxygen octahedra, the Na ion positions, and the electronic phase diagram in NaxCoO2 is made, showing how structural and electronic degrees of freedom can be coupled in electrically conducting triangular lattice systems.Comment: 15 pages, 1 tables, 6 figures Submitted to Physical Review

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    Correlation between the promoter basal core and precore mutations and HBsAg quantification in French blood donors infected with hepatitis B virus

    Get PDF
    International audienceHepatitis B virus (HBV) basal core promoter (BCP) and precore (PC) mutations, HBV viral load and HBV surface antigen (HBsAg) quantitation were screened to assess correlations between these HBV markers in asymptomatic chronic hepatitis B carriers in France. From January 2006 to July 2007, 200 sera were collected from patients who were discovered to be HBsAg-positive when they volunteered to give blood. Direct sequencing of precore/core gene was used to detect A1762T/G1764A mutations in the BCP and G1896A in the PC region. HBV viral load and HBsAg were quantified with two commercials assays. The prevalence of the BCP and PC mixed/mutants were 37% and 60% respectively (P = 0.0001). HBV DNA level and HBsAg titer were significantly lower in subjects harboring the mixed/mutant PC virus compared to those infected by the wild phenotype. No significant difference was observed in HBV viral loads of blood donors infected by wild or mixed/mutant BCP viruses. Mutant or mixed PC virus was associated with male gender, HBeAb-positive status and HBV/D and HBV/E genotypes. BCP mutations were associated with age, and both HBV/A-HBV/E genotypes.The genetic properties of HBV in this cohort showed that most of the blood donors had a negative HBeAg serological status and harbored the PC mutant phenotype in combination with low levels of both HBV DNA and HBsAg. As the study was conducted in healthy subjects who could be considered as asmptomatic carriers, these results suggest a possible protective effect of the G1896A mutation against severe liver lesions. J. Med. Virol. 87:529–535, 2015. © 2014 Wiley Periodicals, Inc

    Localized versus itinerant magnetic moments in Na0.72CoO2

    Full text link
    Based on experimental 59Co-NMR data in the temperature range between 0.1 and 300 K, we address the problem of the character of the Co 3d-electron based magnetism in Na0.7CoO2. Temperature dependent 59Co-NMR spectra reveal different Co environments below 300 K and their differentiation increases with decreasing temperature. We show that the 23Na- and 59Co-NMR data may consistently be interpreted by assuming that below room temperature the Co 3d-electrons are itinerant. Their magnetic interaction appears to favor an antiferromagnetic coupling, and we identify a substantial orbital contribution corb to the d-electron susceptibility. At low temperatures corb seems to acquire some temperature dependence, suggesting an increasing influence of spin-orbit coupling. The temperature dependence of the spin-lattice relaxation rate T1-1(T) confirms significant variations in the dynamics of this electronic subsystem between 200 and 300K, as previously suggested. Below 200 K, Na0.7CoO2 may be viewed as a weak antiferromagnet with TN below 1 K but this scenario still leaves a number of open questions.Comment: 8.7 pages, 6 Figures, submitted to Phys. Rev.

    A new cell primo-culture method for freshwater benthic diatom communities

    Get PDF
    A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were tested in step 3: cell culture medium (Chu No 10 vs Freshwater “WC” medium modified), cell culture vessel, and time of culture. The results showed that using Chu No 10 medium in an Erlenmeyer flask for cell culture was the optimal method, producing enough biomass for ecotoxicological tests as well as minimising development of other microorganisms. After 96 h of culture, communities differed from the original communities sampled in the two rivers studied. Species tolerant of eutrophic or saprobic conditions were favoured during culture. This method of diatom community culture affords the opportunity to assess, in vitro, the effects of different chemicals or effluents (water samples andindustrial effluents) on diatom communities, as well as on diatom cells, from a wide range of perspectives

    Structural properties and cation ordering in layered hexagonal CaxCoO2

    Full text link
    A series of CaxCoO2 (0.15 <= x <= 0.40) materials have been prepared by means of ion exchange reaction from NaxCoO2. Transmission electron microscopy (TEM) measurements revealed a rich variety of structural phenomena resulting from cation ordering, structural distortion and twinning. Systematical structural analysis, in combination with the experimental data of NaxCoO2 (0.15 <= x <= 0.8) and SrxCoO2 (1.5 <= x <= 0.4) systems, suggests that there are two common well-defined cation ordered states corresponding respectively to the orthorhombic superstructure at around x = 1/2 and the 31/2a&#61620;31/2a superstructure at around x = 1/3 in this kind of system. Multiple ordered states, phase separation, and incommensurate structural modulations commonly appear in the materials with 0.33 < x < 0.5. The TEM observations also reveals an additional periodic structural distortion with q2 = a* / 2 in materials for x <= 0.35. This structural modulation also appears in the remarkable superconducting phase Na0.33CoO2 1.3H2O.Comment: 22 pages, 6 figure

    Unconventional Charge Ordering in Na0.70CoO2 below 300 K

    Full text link
    We present the results of measurements of the dc-magnetic susceptibility chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50 and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is found in chi(T). Our data suggest the onset of a dramatic change in the Co 3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our results maybe interpreted as evidence for either a tendency to electron localization or an unconventional charge-density wave phenomenon within the cobalt oxide layer, CoO_2, 3d electron system near room temperature.Comment: 4 pages, 4 figures, re-submitted to Physical Review Letters. The manuscript has been revised following the recommendations of the referees. The discussion section contains substantial change
    • 

    corecore