345 research outputs found
Применение численного моделирования для определения параметров высокоинтенсивных пучков ионов и расчета температурных полей в мишенях под их воздействием
В данной работе на основании экспериментальных данных были получены параметры высокоинтенсивных пучков ионов азота. Численным моделированием проведено исследование динамики формирования температурных градиентов по глубине металлических мишеней из Ti и Al в процессе имплантации высокоинтенсивными пучками ионов газа азота в условиях принудительного охлаждения необлучаемой стороны мишени.In this work, on the basis of experimental data, the parameters of high-intensity beams of nitrogen ions were obtained. The dynamics of the formation of temperature gradients along the depth of Ti and Al metal targets in the process of implantation with high-intensity beams of nitrogen gas ions under conditions of forced cooling of the non-irradiated side of the target has been studied by numerical simulation
Enhancement of vacuum polarization effects in a plasma
The dispersive effects of vacuum polarization on the propagation of a strong
circularly polarized electromagnetic wave through a cold collisional plasma are
studied analytically. It is found that, due to the singular dielectric features
of the plasma, the vacuum effects on the wave propagation in a plasma are
qualitatively different and much larger than those in pure vacuum in the regime
when the frequency of the propagating wave approaches the plasma frequency. A
possible experimental setup to detect these effects in plasma is described.Comment: 33 pages, 3 figure
AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems
A 5-layer neuromorphic vision processor whose components
communicate spike events asychronously using the address-eventrepresentation
(AER) is demonstrated. The system includes a retina
chip, two convolution chips, a 2D winner-take-all chip, a delay line
chip, a learning classifier chip, and a set of PCBs for computer
interfacing and address space remappings. The components use a
mixture of analog and digital computation and will learn to classify
trajectories of a moving object. A complete experimental setup and
measurements results are shown.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C0
Equilibrium shapes of flat knots
We study the equilibrium shapes of prime and composite knots confined to two
dimensions. Using rigorous scaling arguments we show that, due to self-avoiding
effects, the topological details of prime knots are localised on a small
portion of the larger ring polymer. Within this region, the original knot
configuration can assume a hierarchy of contracted shapes, the dominating one
given by just one small loop. This hierarchy is investigated in detail for the
flat trefoil knot, and corroborated by Monte Carlo simulations.Comment: 4 pages, 3 figure
Critical exponents for random knots
The size of a zero thickness (no excluded volume) polymer ring is shown to
scale with chain length in the same way as the size of the excluded volume
(self-avoiding) linear polymer, as , where . The
consequences of that fact are examined, including sizes of trivial and
non-trivial knots.Comment: 4 pages, 0 figure
The Generalized Second Law implies a Quantum Singularity Theorem
The generalized second law can be used to prove a singularity theorem, by
generalizing the notion of a trapped surface to quantum situations. Like
Penrose's original singularity theorem, it implies that spacetime is null
geodesically incomplete inside black holes, and to the past of spatially
infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead,
the generalized second law requires that there only be a finite amount of
entropy producing processes in the past, unless there is a reversal of the
arrow of time. In asymptotically flat spacetime, the generalized second law
also rules out traversable wormholes, negative masses, and other forms of
faster-than-light travel between asymptotic regions, as well as closed timelike
curves. Furthermore it is impossible to form baby universes which eventually
become independent of the mother universe, or to restart inflation. Since the
semiclassical approximation is used only in regions with low curvature, it is
argued that the results may hold in full quantum gravity. An introductory
section describes the second law and its time-reverse, in ordinary and
generalized thermodynamics, using either the fine-grained or the coarse-grained
entropy. (The fine-grained version is used in all results except those relating
to the arrow of time.) A proof of the coarse-grained ordinary second law is
given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised
(4.1, 5.2), more comments on AdS. v3: major revisions including change of
title. v4: similar to published version, but with corrections to plan of
paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of
Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new
footnote
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics
In this article, we analyze the third of three papers, in which Einstein
presented his quantum theory of the ideal gas of 1924-1925. Although it failed
to attract the attention of Einstein's contemporaries and although also today
very few commentators refer to it, we argue for its significance in the context
of Einstein's quantum researches. It contains an attempt to extend and exhaust
the characterization of the monatomic ideal gas without appealing to
combinatorics. Its ambiguities illustrate Einstein's confusion with his initial
success in extending Bose's results and in realizing the consequences of what
later became to be called Bose-Einstein statistics. We discuss Einstein's
motivation for writing a non-combinatorial paper, partly in response to
criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments
are based on Einstein's belief in the complete analogy between the
thermodynamics of light quanta and of material particles and invoke
considerations of adiabatic transformations as well as of dimensional analysis.
These techniques were well-known to Einstein from earlier work on Wien's
displacement law, Planck's radiation theory, and the specific heat of solids.
We also investigate the possible role of Ehrenfest in the gestation of the
theory.Comment: 57 pp
Virus Replication as a Phenotypic Version of Polynucleotide Evolution
In this paper we revisit and adapt to viral evolution an approach based on
the theory of branching process advanced by Demetrius, Schuster and Sigmund
("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46
(1985) 239-262), in their study of polynucleotide evolution. By taking into
account beneficial effects we obtain a non-trivial multivariate generalization
of their single-type branching process model. Perturbative techniques allows us
to obtain analytical asymptotic expressions for the main global parameters of
the model which lead to the following rigorous results: (i) a new criterion for
"no sure extinction", (ii) a generalization and proof, for this particular
class of models, of the lethal mutagenesis criterion proposed by Bull,
Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18
(2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with
a quantitative prescription for its evaluation, (iv) the quantitative
description of the evolution of the expected values in in four distinct
"stages": extinction threshold, lethal mutagenesis, stationary "equilibrium"
and transient. Finally, based on these quantitative results we are able to draw
some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text
overlap with arXiv:1110.336
- …