845 research outputs found

    Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate.

    Get PDF
    The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri

    Chromosomal integration of an avian oncogenic herpesvirus reveals telomeric preferences and evidence for lymphoma clonality

    Get PDF
    Abstract Background Herpesviruses are a major health concern for numerous organisms, including humans, causing both acute and chronic infections recurrent over an individual's lifespan. Marek's disease virus (MDV) is a highly contagious herpesvirus which causes a neoplastic condition in chicken populations. Several vertebrate-infecting herpesviruses have been shown to exist in an integrated state during latent periods of infection. However the status of MDV during latency has been a topic of debate. Results Here we employed high-resolution multi-color fluorescence in situ hybridization (FISH) to show integration of MDV at the telomeres of chicken chromosomes. Cytogenomic mapping of the chromosomal integrations allowed us to examine the clonal relationships among lymphomas within individuals, whereas analysis of tumors from multiple individuals indicated the potential for chromosomal preferences. Conclusions Our data highlight that substantive genome-level interactions between the virus and host exist, and merit consideration for their potential impact and role in key aspects of herpesvirus pathobiology including infection, latency, cellular transformation, latency-breaks and viral evolution

    Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems

    Get PDF
    This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes

    Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa

    Get PDF
    Distinct breeding populations of migratory species may overlap both spatially and temporally, but differ in patterns of habitat use. This has important implications for population monitoring and conservation. To quantify the extent to which two distinct breeding populations of a migratory shorebird, the Black-tailed Godwit Limosa limosa, overlap spatially, temporally and in their use of different habitats during winter. We use mid-winter counts between 1990 and 2001 to identify the most important sites in Iberia for Black-tailed Godwits. Monthly surveys of estuarine mudflats and rice-fields at one major site, the Tejo estuary in Portugal in 2005-2007, together with detailed tracking of colour-ringed individuals, are used to explore patterns of habitat use and segregation of the Icelandic subspecies L. l. islandica and the nominate continental subspecies L. l. limosa. In the period 1990-2001, over 66 000 Black-tailed Godwits were counted on average in Iberia during mid-winter (January), of which 80% occurred at just four sites: Tejo and Sado lower basins in Portugal, and Coto Dontildeana and Ebro Delta in Spain. Icelandic Black-tailed Godwits are present throughout the winter and forage primarily in estuarine habitats. Continental Black-tailed Godwits are present from December to March and primarily use rice-fields. Iberia supports about 30% of the Icelandic population in winter and most of the continental population during spring passage. While the Icelandic population is currently increasing, the continental population is declining rapidly. Although the estuarine habitats used by Icelandic godwits are largely protected as Natura 2000 sites, the habitat segregation means that conservation actions for the decreasing numbers of continental godwits should focus on protection of rice-fields and re-establishment of freshwater wetlands

    A Single Nucleotide Change Affects Fur-Dependent Regulation of sodB in H. pylori

    Get PDF
    Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB) is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur) in the absence of iron (apo-Fur regulation) [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter

    Physical Activity Level and Physical Functionality in Nonagenarians Compared to Individuals Aged 60–74 Years

    Get PDF
    Background: Functional dependence and the risks of disability increase with age. The loss of independence is thought to be partially due to a decrease in physical activity. However, in populations, accurate measurement of physical activity is challenging and may not provide information on functional impairment. Methods: This study therefore assessed physical functionality and physical activity level in a group of nonagenarians (11 men/11 women; 93+/-1 years, 66.6+/-2.4 kg, body mass index [BMI]=24+/-1 kg/m2) and a group of participants aged 60-74 years (17 men/15 women; 70+/-1 years, 83.3+/-3.0 kg, BMI=29+/-1 kg/m2) from the Louisiana Healthy Aging Study. Physical activity level was calculated from total energy expenditure (TEE) and resting metabolic rate (RMR). Physical functionality was assessed using the Reduced Continuous Scale Physical Functional Performance Test (CS-PFP10). Results: Nonagenarians had lower absolute (p Conclusions: When compared to individuals aged 60-74 years, 73% of the reduction in TEE in nonagenarians can be attributed to a reduction in physical activity level, the remaining being accounted for by a reduction in RMR. The reduced physical activity in nonagenarians is associated with less physical functionality. This study provides the first objective comparison of physical functionality and actual levels of physical activity in older individuals
    corecore