275 research outputs found

    Effectiveness of 3 COVID-19 vaccines in preventing SARS-CoV-2 infections, January–May 2021, Aragon, Spain

    Get PDF
    Reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is a worldwide challenge; widespread vaccination could be one strategy for control. We conducted a prospective, population-based cohort study of 964, 258 residents of Aragon, Spain, during December 2020–May 2021. We used the Cox proportional-hazards model with vaccination status as the exposure condition to estimate the effectiveness of 3 coronavirus disease vaccines in preventing SARS-CoV-2 infection. Pfizer-BioNTech had 20.8% (95% CI 11.6%–29.0%) vaccine effectiveness (VE) against infection after 1 dose and 70.0% (95% CI 65.3%–74.1%) after 2 doses, Moderna had 52.8% (95% CI 30.7%–67.8%) VE after 1 dose and 70.3% (95% CI 52.2%–81.5%) after 2 doses, and Oxford-AstraZeneca had 40.3% (95% CI 31.8%–47.7%) VE after 1 dose. All estimates were lower than those from previous studies. Results imply that, although high vaccination coverage remains critical to protect people from disease, it will be difficult to effectively minimize transmission opportunities

    Engineering Graphene Wrinkles for Large Enhancement of Interlaminar Friction Enabled Damping Capability

    Get PDF
    Graphene nanoplates are hoped-for solid lubricants to reduce friction and energy dissipation in micro and nanoscale devices benefiting from their interface slips to reach an expected superlubricity. On the contrary, we propose here by introducing engineered wrinkles of graphene nanoplates to exploit and optimize the interfacial energy dissipation mechanisms between the nanoplates in graphene-based composites for enhanced vibration damping performance. Polyurethane (PU) beams with designed sandwich structures have been successfully fabricated to activate the interlaminar slips of wrinkled graphene− graphene, which significantly contribute to the dissipation of vibration energy. These engineered composite materials with extremely low graphene content (∌0.08 wt %) yield a significant increase in quasi-static and dynamic damping compared to the baseline PU beams (by 71% and 94%, respectively). Friction force images of wrinkled graphene oxide (GO) nanoplates detected via an atomic force microscope (AFM) indicate that wrinkles with large coefficients of friction (COFs) indeed play a dominant role in delaying slip occurrences. Reduction of GO further enhances the COFs of the interacting wrinkles by 7.8%, owing to the increased effective contact area and adhesive force. This work provides a new insight into how to design graphene-based composites with optimized damping properties from the microstructure perspective

    Non-syndromic cleft palate: Association analysis on three gene polymorphisms of the folate pathway in Asian and Italian populations

    Get PDF
    Periconceptional folic acid supplementation can reduce the risk of inborn malformations, including orofacial clefts. Polymorphisms of MTHFR, TCN2, and CBS folate-related genes seem to modulate the risk of cleft lip with or without cleft palate (CL/P) in some populations. CL/P and cleft palate only (CPO) are different malformations that share several features and possibly etiological causes. In the present investigation, we conducted a family-based, candidate gene association study of non-syndromic CPO. Three single nucleotide polymorphisms, namely, rs1801133 of MTHFR, rs1801198 of TCN2, and rs4920037 of CBS, were investigated in a sample that included 129 Italian and 65 Asian families. No evidence of association between the three genotyped polymorphisms and CPO was found in the Italian and Asian cases, indeed the transmission disequilibrium test did not detect any asymmetry of transmission of alleles. This investigation, although with some limitation, further supports that CL/P and CPO diverge in their genetic background

    Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    Get PDF
    Background: Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR).Methods/Principal Findings: The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm.Conclusions/Significance: Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.This work received financial support from the Ministry of Science and Technology of Argentina [PICT 2011-0207 to AGS] and the National Scientific and Technical Research Council in Argentina (CONICET) [PIP 112 2011-010-0974 to AGS]. Work related to evaluation of biological samples was partially sponsored by the Pan-American Health Organization (PAHO) [Small Grants Program PAHO-TDR]; the Drugs and Neglected Diseases Initiative (DNDi, Geneva, Switzerland), Wellcome Trust (London, United Kingdom), SANOFI-AVENTIS (Buenos Aires, Argentina) and the National Council for Science and Technology in Mexico (CONACYT) [FONSEC 161405 to JMR]

    High Throughput Selection of Effective Serodiagnostics for Trypanosoma cruzi infection

    Get PDF
    The diagnosis of Trypanosoma cruzi infection (the cause of human Chagas disease) is difficult because the symptoms of the infection are often absent or non-specific, and because the parasites themselves are usually below the level of detection in the infected subjects. Therefore, diagnosis generally depends on the measurement of T. cruzi–specific antibodies produced in response to the infection. However, current methods to detect anti–T. cruzi antibodies are relatively poor. In this study, we have conducted a broad screen of >400 T. cruzi proteins to identify those proteins which are best able to detect anti–T. cruzi antibodies. Using a set of proteins selected by this screen, we were able to detect 100% of >100 confirmed positive human cases of T. cruzi infection, as well as suspect cases that were negative using existing tests. This protein panel was also able to detect apparent changes in infection status following drug treatment of individuals with chronic T. cruzi infection. The results of this study should allow for significant improvements in the detection of T. cruzi infection and better screening methods to avoid blood transfusion–related transmission of the infection, and offer a crucial tool for determining the success or failure of drug treatment and other intervention strategies to limit the impact of Chagas disease

    Determination of the neutron fluence, the beam characteristics and the backgrounds at the CERN-PS TOF facility

    Get PDF

    Hepatobiliary and pancreatic imaging in children—techniques and an overview of non-neoplastic disease entities

    Get PDF
    Imaging plays a major role in the diagnostic work-up of children with hepatobiliary or pancreatic diseases. It consists mainly of US, CT and MRI, with US and MRI being the preferred imaging modalities because of the lack of ionizing radiation. In this review the technique of US, CT and MRI in children will be addressed, followed by a comprehensive overview of the imaging characteristics of several hepatobiliary and pancreatic disease entities most common in the paediatric age group
    • 

    corecore