174 research outputs found
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and
quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They
are sensitive to strange quark contributions to currents in the nucleon, and to
the nucleon axial current. The results indicate strange quark contributions of
< 10% of the charge and magnetic nucleon form factors at these four-momentum
transfers. We also present the first measurement of anapole moment effects in
the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic
scattering of transversely polarized electrons from the proton, and performed
the first measurement in quasi-elastic scattering on the deuteron, at backward
angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63
GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry
arises due to the imaginary part of the interference of the two-photon exchange
amplitude with that of single photon exchange. Results for the proton are
consistent with a model calculation which includes inelastic intermediate
hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for
the scattering from the neutron is made using a quasi-static deuterium
approximation, and is also in agreement with theory
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton
scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These
asymmetries, arising from interference of the electromagnetic and neutral weak
interactions, are sensitive to strange quark contributions to the currents of
the proton. The measurements were made at JLab using a toroidal spectrometer to
detect the recoiling protons from a liquid hydrogen target. The results
indicate non-zero, Q^2 dependent, strange quark contributions and provide new
information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Phosphorylation of LCRMP-1 by GSK3β Promotes Filopoda Formation, Migration and Invasion Abilities in Lung Cancer Cells
LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome
Abrasion resistance and compressive strength of unprocessed rice husk ash concrete
This paper investigates the effects of adding natural rice husk ash collected from uncontrolled burning and without previous grinding (NRHA) as cement replacement in concrete. To obtain an adequate particle size, NRHA was mixed with coarse aggregate for a convenient period of time before adding the other components. Compressive strength, water absorption, porosity, and abrasion resistance expressed as weight loss were examined. Test results show that decreasing the particle size through mixing with coarse aggregate improved the compressive strength, reduced the permeability, and increased the abrasion resistance of concrete. By mixing NRHA with aggregate for 8 min, abrasion resistance improved by 10.35 and 23.62% over the control concrete at 28 and 91 days, respectively. Incorporating NRHA in concrete by grinding with coarse aggregate during the mixing process could be suitable for making normal-strength concrete and for applications where abrasion resistance is an important parameter. In addition, using NRHA as a partial replacement cement contributes to the reduction of CO2 emissions due to the production of cement
Role of the Functional Toll-Like Receptor-9 Promoter Polymorphism (-1237T/C) in Increased Risk of End-Stage Renal Disease:A Case-Control Study
Inflammation induced by infectious and noninfectious triggers in the kidney may lead to end stage renal disease (ESRD). Toll-like receptor 9 (TLR-9) a receptor for CpG DNA is involved in activation of immune cells in renal disease and may contribute to chronic inflammatory disease progression through an interleukin-6 (IL-6) dependent pathway. Previous studies indicate that -1237T/C confers regulatory effects on TLR-9 transcription. To date the effect of TLR-9 polymorphisms on ESRD remains unknown. We performed a case-control study and genotyped 630 ESRD patients and 415 controls for -1237T/C, -1486T/C and 1635G/A by real-time PCR assays and assessed plasma concentration of IL-6 by ELISA. Haplotype association analysis was performed using the Haploview package. A luciferase reporter assay and real-time PCR were used to test the function of the -1237T/C promoter polymorphism. A significant association between -1237T/C in TLR-9 and ESRD was identified. The TCA, TTA and CCA haplotype of TLR-9 were associated with ESRD. ESRD patients carrying -1237TC had a higher mean plasma IL-6 level when compared with -1237TT. The TLR-9 transcriptional activity of the variant -1237CC allele is higher than the -1237TT allele. The results indicate that in a Han Chinese population the presence of the C allele of -1237T/C in the TLR-9 gene increases susceptibility towards development of ESRD. In vitro studies demonstrate that -1237T/C may be involved in the development of ESRD through transcriptional modulation of TLR-9
Measurement of the Parity-Violating Asymmetry in Inclusive Electroproduction of π- near the Δ0 Resonance
The parity-violating (PV) asymmetry of inclusive π-production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasifree photoproduction off the neutron via the Δ0 resonance. In the context of heavy-baryon chiral perturbation theory, this asymmetry is related to a low-energy constant dΔ- that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated dΔ- in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from Aγ-=-5.2 to +5.2 ppm. The measurement performed in this work leads to Aγ-=-0.36±1.06±0.37±0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to Vud/Vus. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form factors using PV electron scattering
Chitosan Modification of Adenovirus to Modify Transfection Efficiency in Bovine Corneal Epithelial Cells
BACKGROUND: The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad) on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[gamma-maleimidobutyryloxy]succinimide ester (GMBS). METHODOLOGY/PRINCIPAL FINDINGS: Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS). Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from -24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. CONCLUSIONS/SIGNIFICANCE: Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications
- …