2,761 research outputs found

    Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Get PDF
    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources

    Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy

    Get PDF
    Magnetostatic modes of yttrium iron garnet (YIG) films are investigated by ferromagnetic resonance force microscopy. A thin-film "probe" magnet at the tip of a compliant cantilever introduces a local inhomogeneity in the internal field of the YIG sample. This influences the shape of the sample's magnetostatic modes, thereby measurably perturbing the strength of the force coupled to the cantilever. We present a theoretical model that explains these observations; it shows that the tip-induced variation of the internal field creates either a local "potential barrier" or "potential well" for the magnetostatic waves. The data and model together indicate that local magnetic imaging of ferromagnets is possible, even in the presence of long-range spin coupling, through the introduction of localized magnetostatic modes predicted to arise from sufficiently strong tip fields

    Anatomy of the Soft-Photon Approximation in Hadron-Hadron Bremsstrahlung

    Full text link
    A modified Low procedure for constructing soft-photon amplitudes has been used to derive two general soft-photon amplitudes, a two-s-two-t special amplitude MμTsTtsM^{TsTts}_{\mu} and a two-u-two-t special amplitude MμTuTtsM^{TuTts}_{\mu}, where s, t and u are the Mandelstam variables. MμTsTtsM^{TsTts}_{\mu} depends only on the elastic T-matrix evaluated at four sets of (s,t) fixed by the requirement that the amplitude be free of derivatives (\partialT/\partials and /or \partialT/t\partial t). Likewise MμTuTtsM^{TuTts}_{\mu} depends only on the elastic T-matrix evaluated at four sets of (u,t). In deriving these amplitudes, we impose the condition that MμTsTtsM^{TsTts}_{\mu} and MμTuTtsM^{TuTts}_{\mu} reduce to MˉμTsTts\bar{M}^{TsTts}_{\mu} and MˉμTuTts\bar{M}^{TuTts}_{\mu}, respectively, their tree level approximations. The amplitude MˉμTsTts\bar{M}^{TsTts}_{\mu} represents photon emission from a sum of one-particle t-channel exchange diagrams and one-particle s-channel exchange diagrams, while the amplitude MˉμTuTts\bar{M}^{TuTts} _{\mu} represents photon emission from a sum of one-particle t-channel exchange diagrams and one-particle u-channel exchange diagrams. The precise expressions for MˉμTsTts\bar{M}^{TsTts}_{\mu} and MˉμTuTts\bar{M}^{TuTts}_{\mu} are determined by using the radiation decomposition identities of Brodsky and Brown. We point out that it is theoretically impossible to describe all bremsstrahlung processes by using only a single class of soft-photon amplitudes. At least two different classes are required: the amplitudes which depend on s and t or the amplitudes which depend on u and t. When resonance effects are important, the amplitude MμTsTtsM^{TsTts}_{\mu}, not MμLow(st)M^{Low(st)}_{\mu}, should be used. For processes with strong u-channel exchange effects, the amplitude MμTuTtsM^{TuTts}_{\mu} should be the first choice.Comment: 49 pages report # LA-UR-92-270

    Origins of Solar System Dust Beyond Jupiter

    Get PDF
    The measurements of cosmic interplanetary dust by the instruments on board the Pioneer 10 and 11 spacecraft contain the dynamical signature of dust generated by Edgeworth-Kuiper Belt objects, as well as short period Oort Cloud comets and short period Jupiter family comets. While the dust concentration detected between Jupiter and Saturn is mainly due to the cometary components, the dust outside Saturn's orbit is dominated by grains originating from the Edgeworth-Kuiper Belt. In order to sustain a dust concentration that accounts for the Pioneer measurements, short period external Jupiter family comets, on orbits similar to comet 29P/Schwassmann-Wachmann-1, have to produce 8×104:g:s18\times 10^4:{\rm g}:{\rm s}^{-1} of dust grains with sizes between 0.01 and 6:mm6:{\rm mm}. A sustained production rate of 3×105:g:s13\times 10^5:{\rm g}:{\rm s}^{-1} has to be provided by short period Oort cloud comets on 1P/Halley-like orbits. The comets can not, however, account for the dust flux measured outside Saturn's orbit. The measurements there can only be explained by a generation of dust grains in the Edgeworth-Kuiper belt by mutual collisions of the source objects and by impacts of interstellar dust grains onto the objects' surfaces. These processes have to release in total 5×107:g:s15\times 10^7:{\rm g}:{\rm s}^{-1} of dust from the Edgeworth Kuiper belt objects in order to account for the amount of dust found by Pioneer beyond Saturn, making the Edgeworth-Kuiper disk the brightest extended feature of the Solar System when observed from afar

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    Structural transition in epitaxial Co/Cr multilayers as studied by X-ray absorption spectroscopy

    Get PDF
    [[abstract]]We have performed Cr and Co K-edge x-ray-absorption measurements to investigate the dependence of local electronic and atomic structures on the Cr-layer thickness in epitaxial Co (40A)/Ct (t~) (t~ = 2, 3, 5, 7, and 9A) multilayers. The Cr K x-ray absorption near edge structure (XANES) spectra of Co/Cr multilayers indicate an abrupt transition of the Cr layer from a bcc structure to a hcp structure when the thickness of the Cr layer is decreased down to -5A or three atomic layers. The structural transition and bond-length distortion in Cr and Co layers observed in the extended x-ray absorption fine structure (EXAFS) measurements are consistent with the XANES results.[[notice]]補正完畢[[journaltype]]國外[[booktype]]紙本[[booktype]]電子版[[countrycodes]]US
    corecore