417 research outputs found
Breathing oscillations of a trapped impurity in a Bose gas
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1
preprint, 2011], we study breathing oscillations in the width of a harmonically
trapped impurity interacting with a separately trapped Bose gas. We provide an
intuitive physical picture of such dynamics at zero temperature, using a
time-dependent variational approach. In the Gross-Pitaevskii regime we obtain
breathing oscillations whose amplitudes are suppressed by self trapping, due to
interactions with the Bose gas. Introducing phonons in the Bose gas leads to
the damping of breathing oscillations and non-Markovian dynamics of the width
of the impurity, the degree of which can be engineered through controllable
parameters. Our results reproduce the main features of the impurity dynamics
observed by Catani et al. despite experimental thermal effects, and are
supported by simulations of the system in the Gross-Pitaevskii regime.
Moreover, we predict novel effects at lower temperatures due to self-trapping
and the inhomogeneity of the trapped Bose gas.Comment: 7 pages, 3 figure
Polaron Physics in Optical Lattices
We investigate the effects of a nearly uniform Bose-Einstein condensate (BEC)
on the properties of immersed trapped impurity atoms. Using a weak-coupling
expansion in the BEC-impurity interaction strength, we derive a model
describing polarons, i.e., impurities dressed by a coherent state of Bogoliubov
phonons, and apply it to ultracold bosonic atoms in an optical lattice. We show
that, with increasing BEC temperature, the transport properties of the
impurities change from coherent to diffusive. Furthermore, stable polaron
clusters are formed via a phonon-mediated off-site attraction.Comment: 4 pages, 4 figure
Matter sound waves in two-component Bose-Einstein condensates
The creation and propagation of sound waves in two-component Bose-Einstein
condensates (BEC) are investigated and a new method of wave generation in
binary BEC mixtures is proposed. The method is based on a fast change of the
inter-species interaction constant and is illustrated for two experimental
settings: a drop-like condensate immersed into a second large repulsive
condensate, and a binary mixture of two homogeneous repulsive BEC's. A
mathematical model based on the linearized coupled Gross-Pitaevskii equations
is developed and explicit formulae for the space and time dependence of sound
waves are provided. Comparison of the analytical and numerical results shows
excellent agreement, confirming the validity of the proposed approach.Comment: 16 pages, 9 figure
Phonon resonances in atomic currents through Bose-Fermi mixtures in optical lattices
We present an analysis of Bose-Fermi mixtures in optical lattices for the
case where the lattice potential of the fermions is tilted and the bosons (in
the superfluid phase) are described by Bogoliubov phonons. It is shown that the
Bogoliubov phonons enable hopping transitions between fermionic Wannier-Stark
states; these transitions are accompanied by energy dissipation into the
superfluid and result in a net atomic current along the lattice. We derive a
general expression for the drift velocity of the fermions and find that the
dependence of the atomic current on the lattice tilt exhibits negative
differential conductance and phonon resonances. Numerical simulations of the
full dynamics of the system based on the time-evolving block decimation
algorithm reveal that the phonon resonances should be observable under the
conditions of a realistic measuring procedure.Comment: 8 pages, 5 figure
Phonon resonances in atomic currents through Bose-Fermi mixtures in optical lattices
We present an analysis of Bose-Fermi mixtures in optical lattices for the case where the lattice potential of the fermions is tilted and the bosons (in the superfluid phase) are described by Bogoliubov phonons. It is shown that the Bogoliubov phonons enable hopping transitions between fermionic Wannier-Stark states; these transitions are accompanied by energy dissipation into the superfluid and result in a net atomic current along the lattice. We derive a general expression for the drift velocity of the fermions and find that the dependence of the atomic current on the lattice tilt exhibits negative differential conductance and phonon resonances. Numerical simulations of the full dynamics of the system based on the time-evolving block decimation algorithm reveal that the phonon resonances should be observable under the conditions of a realistic measuring procedure
Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220
We report on Herschel/PACS observations of absorption lines of OH+, H2O+ and
H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with E_lower of at
least 285 and \sim200 K, respectively, are detected in both sources, indicating
radiative pumping and location in the high radiation density environment of the
nuclear regions. Abundance ratios OH+/H2O+ of 1-2.5 are estimated in the nuclei
of both sources. The inferred OH+ column and abundance relative to H nuclei are
(0.5-1)x10^{16} cm-2 and \sim2x10^{-8}, respectively. Additionally, in Arp 220,
an extended low excitation component around the nuclear region is found to have
OH+/H2O+\sim5-10. H3O+ is detected in both sources with
N(H3O+)\sim(0.5-2)x10^{16} cm-2, and in Arp 220 the pure inversion, metastable
lines indicate a high rotational temperature of ~500 K, indicative of formation
pumping and/or hot gas. Simple chemical models favor an ionization sequence
dominated by H+ - O+ - OH+ - H2O+ - H3O+, and we also argue that the H+
production is most likely dominated by X-ray/cosmic ray ionization. The full
set of observations and models leads us to propose that the molecular ions
arise in a relatively low density (\gtrsim10^4 cm-3) interclump medium, in
which case the ionization rate per H nucleus (including secondary ionizations)
is zeta>10^{-13} s-1, a lower limit that is severalx10^2 times the highest rate
estimates for Galactic regions. In Arp 220, our lower limit for zeta is
compatible with estimates for the cosmic ray energy density inferred previously
from the supernova rate and synchrotron radio emission, and also with the
expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray
ionization due to an AGN is responsible for the molecular ion production.Comment: 24 pages, 13 figures. Accepted for publication in Astronomy &
Astrophysic
Influence of the disorder on tracer dispersion in a flow channel
Tracer dispersion is studied experimentally in periodic or disordered arrays
of beads in a capillary tube. Dispersion is measured from light absorption
variations near the outlet following a steplike injection of dye at the inlet.
Visualizations using dye and pure glycerol are also performed in similar
geometries. Taylor dispersion is dominant both in an empty tube and for a
periodic array of beads: the dispersivity increases with the P\'eclet
number respectively as and and is larger by a factor of 8
in the second case. In a disordered packing of smaller beads (1/3 of the tube
diameter) geometrical dispersion associated to the disorder of the flow field
is dominant with a constant value of reached at high P\'eclet numbers.
The minimum dispersivity is slightly higher than in homogeneous nonconsolidated
packings of small grains, likely due heterogeneities resulting from wall
effects. In a disordered packing with the same beads as in the periodic
configuration, is up to 20 times lower than in the latter and varies as
with or (depending on the fluid viscosity).
A simple model accounting for this latter result is suggested.Comment: available online at
http://www.edpsciences.org/journal/index.cfm?edpsname=epjap&niv1=contents&niv2=archive
Bird migration flight altitudes studied by a network of operational weather radars
A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which—when extended to multiple radars—enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe
The JCMT Spectral Legacy Survey: physical structure of the molecular envelope of the high-mass protostar AFGL2591
The understanding of the formation process of massive stars (>8 Msun) is
limited, due to theoretical complications and observational challenges.
We investigate the physical structure of the large-scale (~10^4-10^5 AU)
molecular envelope of the high-mass protostar AFGL2591 using spectral imaging
in the 330-373 GHz regime from the JCMT Spectral Legacy Survey. Out of ~160
spectral features, this paper uses the 35 that are spatially resolved.
The observed spatial distributions of a selection of six species are compared
with radiative transfer models based on a static spherically symmetric
structure, a dynamic spherical structure, and a static flattened structure. The
maps of CO and its isotopic variations exhibit elongated geometries on scales
of ~100", and smaller scale substructure is found in maps of N2H+, o-H2CO, CS,
SO2, CCH, and methanol lines. A velocity gradient is apparent in maps of all
molecular lines presented here, except SO, SO2, and H2CO. We find two emission
peaks in warm (Eup~200K) methanol separated by 12", indicative of a secondary
heating source in the envelope.
The spherical models are able to explain the distribution of emission for the
optically thin H13CO+ and C34S, but not for the optically thick HCN, HCO+, and
CS, nor for the optically thin C17O. The introduction of velocity structure
mitigates the optical depth effects, but does not fully explain the
observations, especially in the spectral dimension. A static flattened envelope
viewed at a small inclination angle does slightly better.
We conclude that a geometry of the envelope other than an isotropic static
sphere is needed to circumvent line optical depth effects. We propose that this
could be achieved in envelope models with an outflow cavity and/or
inhomogeneous structure at scales smaller than ~10^4 AU. The picture of
inhomogeneity is supported by observed substructure in at least six species.Comment: 17 pages; accepted for publication in A&
Transport of strong-coupling polarons in optical lattices
We study the transport of ultracold impurity atoms immersed in a
Bose-Einstein condensate (BEC) and trapped in a tight optical lattice. Within
the strong-coupling regime, we derive an extended Hubbard model describing the
dynamics of the impurities in terms of polarons, i.e. impurities dressed by a
coherent state of Bogoliubov phonons. Using a generalized master equation based
on this microscopic model we show that inelastic and dissipative phonon
scattering results in (i) a crossover from coherent to incoherent transport of
impurities with increasing BEC temperature and (ii) the emergence of a net
atomic current across a tilted optical lattice. The dependence of the atomic
current on the lattice tilt changes from ohmic conductance to negative
differential conductance within an experimentally accessible parameter regime.
This transition is accurately described by an Esaki-Tsu-type relation with the
effective relaxation time of the impurities as a temperature-dependent
parameter.Comment: 25 pages, 6 figure
- …