8,047 research outputs found
An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines
A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants
Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment
Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters
Research into the feasibility of thin metal and oxide film capacitors Interim scientific report
Feasibility of thin metal and oxide film capacitor
Initialization of the shallow water equations with open boundaries by the bounded derivative method
The shallow water equations are a symmetric hyperbolic system with two time scales. In meteorological terms, slow and fast scale motions are referred to as Rossby and inertial/gravity waves, respectively. We prove the existence of smooth solutions (solutions with a number of space and time derivatives on the order of the slow time scale) of the open boundary problem for the shallow water equations by the bounded derivative method. The proof requires that a number of initial time derivatives be of the order of the slow time scale and that the boundary data be smooth. If the boundary data are smooth and only have small errors, then we show that the solution of the open boundary problem is smooth and that only small errors are produced in the interior. If the boundary data are smooth but have large errors, then we show that the solution of the open boundary problem is still smooth. Unfortunately the boundary error propagates into the interior at the speed associated with the fast time scale and destroys the solution in a short time. Thus it is necessary to keep the boundary error small if the solution is to be computed correctly. We show that this restriction can be relaxed so that only the large-scale boundary data need be correct. We demonstrate the importance of these conclusions in several numerical experiments
Inferring physical conditions in interstellar clouds of H_2
We have developed a code that models the formation, destruction, radiative
transfer, and vibrational/rotational excitation of H_2 in a detailed fashion.
We discuss how such codes, together with FUSE observations of H_2 in diffuse
and translucent lines of sight, may be used to infer various physical
parameters. We illustrate the effects of changes in the major physical
parameters (UV radiation field, gas density, metallicity), and we point out the
extent to which changes in one parameter may be mirrored by changes in another.
We provide an analytic formula for the molecular fraction, f_H2, as a function
of cloud column density, radiation field, and grain formation rate of H_2. Some
diffuse and translucent lines of sight may be concatenations of multiple
distinct clouds viewed together. Such situations can give rise to observables
that agree with the data, complicating the problem of uniquely identifying one
set of physical parameters with a line of sight. Finally, we illustrate the
application of our code to an ensemble of data, such as the FUSE survey of H_2
in the Large and Small Magellanic Clouds (LMC/SMC), in order to constrain the
elevated UV radiation field intensity and reduced grain formation rate of H_2
in those low- metallicity environments.Comment: 33 pages (aastex, manuscript), 9 figures (3 color). accepted to Ap
Scaling and computation of smooth atmospheric motions
We introduce a general scaling of the inviscid Eulerian equations which is satisfied by all members of the set of adiabatic smooth stratified atmospheric motions. Then we categorize the members into mutually exclusive subsets. By applying the bounded derivative principle to each of the subsets, we determine the specific scaling satisfied by that subset. One subset is midlatitude motion which is hydrostatic and has equal horizontal length scales. Traditionally, the primitive equations have been used to describe these motions. However it is well known that the use of the primitive equations for a limited area forecast of these motions leads to an ill-posed initial-boundary value problem. We introduce an alternate system which accurately describes this type of motion and can be used to form a well-posed initial-boundary value problem. We prove that the new system can also be used for any adiabatic or diabatic smooth stratified flow. Finally, we present supporting numerical results
Research into the feasibility of thin metal and oxide film capacitors
Feasibility of thin metal and oxide film capacitor
Void-mediated formation of Sn quantum dots in a Si matrix
Atomic scale analysis of Sn quantum dots (QDs) formed during the molecular beam-epitaxy (MBE) growth of Sn_xSi_(1−x) (0.05 ⩽ x ⩽ 0.1) multilayers in a Si matrix revealed a void-mediated formation mechanism. Voids below the Si surface are induced by the lattice mismatch strain between Sn_xSi_(1−x) layers and Si, taking on their equilibrium tetrakaidecahedron shape. The diffusion of Sn atoms into these voids leads to an initial rapid coarsening of quantum dots during annealing. Since this formation process is not restricted to Sn, a method to grow QDs may be developed by controlling the formation of voids and the diffusion of materials into these voids during MBE growth
Dynamo Action in the Solar Convection Zone and Tachocline: Pumping and Organization of Toroidal Fields
We present the first results from three-dimensional spherical shell
simulations of magnetic dynamo action realized by turbulent convection
penetrating downward into a tachocline of rotational shear. This permits us to
assess several dynamical elements believed to be crucial to the operation of
the solar global dynamo, variously involving differential rotation resulting
from convection, magnetic pumping, and amplification of fields by stretching
within the tachocline. The simulations reveal that strong axisymmetric toroidal
magnetic fields (about 3000 G in strength) are realized within the lower stable
layer, unlike in the convection zone where fluctuating fields are predominant.
The toroidal fields in the stable layer possess a striking persistent
antisymmetric parity, with fields in the northern hemisphere largely of
opposite polarity to those in the southern hemisphere. The associated mean
poloidal magnetic fields there have a clear dipolar geometry, but we have not
yet observed any distinctive reversals or latitudinal propagation. The presence
of these deep magnetic fields appears to stabilize the sense of mean fields
produced by vigorous dynamo action in the bulk of the convection zone.Comment: 4 pages, 3 color figures (compressed), in press at ApJ
Consequences of Electromagnetic Stimulation on Hydraulic Conductivity of Soils
Hydraulic conductivity is a measure of the rate at which water flows through porous media. Because of the dipole properties of water molecules, any electric field can affect hydraulic conductivity. In this study, the effect of radio-frequency (RF) waves on hydraulic conductivity is investigated. This is important both for the geophysical measurement of hydraulic conductivity as well as remediation using electromagnetic waves. Bentonite clay and sandy samples are tested in rigid-wall, cylindrical permeameters and stimulated using a CPVC-cased monopole antenna vertically centered in the permeameters. The permeameters are encased within RF cavities constructed of aluminum mesh in order to prevent interference from outside and to confine the RF wave to the medium. Falling-head and constant-head tests are performed to measure the hydraulic conductivity of the clayey and sandy soil samples, respectively. The results show a correlation between the change in the hydraulic conductivity and the characteristics of the RF stimulation. The change is, however, different for sandy and clayey soils
- …
