116 research outputs found

    Topology Change in Canonical Quantum Cosmology

    Full text link
    We develop the canonical quantization of a midisuperspace model which contains, as a subspace, a minisuperspace constituted of a Friedman-Lema\^{\i}tre-Robertson-Walker Universe filled with homogeneous scalar and dust fields, where the sign of the intrinsic curvature of the spacelike hypersurfaces of homogeneity is not specified, allowing the study of topology change in these hypersurfaces. We solve the Wheeler-DeWitt equation of the midisuperspace model restricted to this minisuperspace subspace in the semi-classical approximation. Adopting the conditional probability interpretation, we find that some of the solutions present change of topology of the homogeneous hypersurfaces. However, this result depends crucially on the interpretation we adopt: using the usual probabilistic interpretation, we find selection rules which forbid some of these topology changes.Comment: 23 pages, LaTex file. We added in the conclusion some comments about path integral formalism and corrected litle misprinting

    Semiclassical Black Hole States and Entropy

    Get PDF
    We discuss semiclassical states in quantum gravity corresponding to Schwarzschild as well as Reissner Nordstr\"om black holes. We show that reduced quantisation of these models is equivalent to Wheeler-DeWitt quantisation with a particular factor ordering. We then demonstrate how the entropy of black holes can be consistently calculated from these states. While this leads to the Bekenstein-Hawking entropy in the Schwarzschild and non-extreme Reissner-Nordstr\"om cases, the entropy for the extreme Reissner-Nordstr\"om case turns out to be zero.Comment: Revtex, 15 pages, some clarifying comments and additional references included, to appear in Phys. Rev.

    Microcanonical statistics of black holes and bootstrap condition

    Full text link
    The microcanonical statistics of the Schwarzschild black holes as well as the Reissner-Nordstro¨\sf \ddot{o}m black holes are analyzed. In both cases we set up the inequalities in the microcanonical density of states. These are then used to show that the most probable configuration in the gases of black holes is that one black hole acquires all of the mass and all of the charge at high energy limit. Thus the black holes obey the statistical bootstrap condition and, in contrast to the other investigation, we see that U(1) charge does not break the bootstrap property.Comment: 16 pages. late

    A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole

    Get PDF
    We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters MM and QQ of the Reissner-Nordstr\"{o}m black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordstr\"{o}m black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity M2−Q2M^2-Q^2 is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of the quantity M2−Q2\sqrt{M^2-Q^2} are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 37 pages, Plain TeX, no figure

    Must Quantum Spacetimes Be Euclidean?

    Full text link
    The Bohm-de Broglie interpretation of quantum mechanics is applied to canonical quantum cosmology. It is shown that, irrespective of any regularization or choice of factor ordering of the Wheeler-DeWitt equation, the unique relevant quantum effect which does not break spacetime is the change of its signature from lorentzian to euclidean. The other quantum effects are either trivial or break the four-geometry of spacetime. A Bohm-de Broglie picture of a quantum geometrodynamics is constructed, which allows the investigation of these latter structures. For instance, it is shown that any real solution of the Wheeler-De Witt equation yields a generate four-geometry compatible with the strong gravity limit of General Relativity and the Carroll group. Due to the more detailed description of quantum geometrodynamics given by the Bohm-de Broglie interpretation, some new boundary conditions on solutions of the Wheeler-DeWitt equation must be imposed in order to preserve consistency of this finer view.Comment: 42 pages LaTeX, last version with minor corrections, being the most importants on pages 0, 6, 11, 21, 23, and 30 . The new title does not change our conclusion

    The Bohm Interpretation of Quantum Cosmology

    Full text link
    I make a review on the aplications of the Bohm-De Broglie interpretation of quantum mechanics to quantum cosmology. In the framework of minisuperspaces models, I show how quantum cosmological effects in Bohm's view can avoid the initial singularity, isotropize the Universe, and even be a cause for the present observed acceleration of the Universe. In the general case, we enumerate the possible structures of quantum space and time.Comment: 28 pages, 1 figure, contribution to the James Cushing festschrift to appear in Foundations of Physic

    Quantum Scalar Field on the Massless (2+1)-Dimensional Black Hole Background

    Get PDF
    The behavior of a quantum scalar field is studied in the metric ground state of the (2+1)-dimensional black hole of Ba\~nados, Teitelboim and Zanelli which contains a naked singularity. The one-loop BTZ partition function and the associate black hole effective entropy, the expectation value of the quantum fluctuation as well as the renormalized expectation value of the stress tensor are explicitly computed in the framework of the ζ\zeta-function procedure. This is done for all values of the coupling with the curvature, the mass of the field and the temperature of the quantum state. In the massless conformally coupled case, the found stress tensor is used for determining the quantum back reaction on the metric due to the scalar field in the quantum vacuum state, by solving the semiclassical Einstein equations. It is finally argued that, within the framework of the 1/N expansion, the Cosmic Censorship Hypothesis is implemented since the naked singularity of the ground state metric is shielded by an event horizon created by the back reaction.Comment: 18 pages, RevTeX, no figures, minor changes, final version accepted for publication in Phys. Rev.

    Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria

    Get PDF
    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells

    Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II

    Get PDF
    Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin/lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. A Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wildtype. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this is the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation
    • …
    corecore