100 research outputs found

    4-Anilino-1-benzyl­piperidine-4-carbo­nitrile

    Get PDF
    The title mol­ecule, C19H21N3, an important precursor in the synthesis of porphyrin–fentanyl conjugates, has its piperidine ring in the chair conformation, with endocyclic torsion-angle magnitudes in the range 53.26 (8)–60.63 (9)°. The C N group is axial, while the CH2Ph and NHPh groups are equatorial. The NH group does not engage in strong hydrogen bonding, but forms an inter­molecular N—H⋯N inter­action

    Achieving equity through 'gender autonomy': the challenges for VET policy and practice

    Get PDF
    This paper is based on research carried out in an EU Fifth Framework project on 'Gender and Qualification'. The research partners from five European countries investigated the impact of gender segregation in European labour markets on vocational education and training, with particular regard to competences and qualifications. The research explored the part played by gender in the vocational education and training experiences of (i) young adults entering specific occupations in child care, electrical engineering and food preparation/service (ii) adults changing occupations

    Venezuela e ALBA: regionalismo contra-hegemônico e ensino superior para todos

    Full text link
    Partindo de um quadro teórico neo-gramsciano crítico à globalização, este artigo aplica a nova teoria do regionalismo (NTR) e a teoria do regionalismo regulatório (TRR) à sua análise e teorização dos tratados de comércio da Aliança Bolivariana para os Povos da Nossa América (ALBA-TCP) como regionalismo contra-hegemônico na América Latina e Caribe (ALC). A ALBA está centrada na ideia de um Socialismo do Século XXI, que, como (inicialmente) também a Revolução Bolivariana da Venezuela, substitui a 'vantagem competitiva' pela 'vantagem cooperativa'. Em seu caráter de conjunto de processos multidimensionais e transnacionais a ALBA-TCP opera dentro de/transversalmente a um número de setores e escalas, ao mesmo passo que as transformações estruturais são movidas pela interação de agentes do Estado e agentes não estatais. A política de Educação Superior para Todos (ESPT) do governo venezuelano rejeita a agenda neoliberal globalizada de mercadorização, privatização e elitismo e reinvindica educação pública gratuita em todos os níveis como um direito humano fundamental. A ESPT está sendo regionalizado em um espaço educacional emergente da ALBA e assume um papel-chave nos processos de democracia direta e participatória, dos quais a construção popular (bottom-up) da contra-hegemonia e a redefinição política e econômica da ALC dependem. Antes de produzir sujeitos empreendedores conformes ao capitalismo global, a ESPT procura formar subjetividades ao longo de valores morais de solidariedade e cooperação. Isso será ilustrado com referência a um estudo etnográfico de caso da Universidade Bolivariana da Venezuela (UBV).This paper employs new regionalism theory and regulatory regionalism theory in its analysis and theorisation of the Bolivarian Alliance for the Peoples of Our America (ALBA) as a counter-hegemonic Latin American and Caribbean (LAC) regionalism. As (initially) the regionalisation of Venezuela's Bolivarian Revolution, ALBA is centred around the idea of a 21st Century Socialism that replaces the 'competitive advantage' with the 'cooperative advantage'. ALBA, as a set of multi-dimensional inter- and transnational processes, operates within and across a range of sectors and scales whilst the structural transformations are driven by the interplay of state and non-state actors. The Venezuelan government's Higher Education For All (HEFA) policy, which is being regionalised within an emergent ALBA education space, assumes a key role in the direct democratic and participatory democratic processes upon which a bottom-up construction of counter-hegemony depends. HEFA challenges the globalised neoliberal higher education agenda of commoditisation, privatisation and elitism. Rather than producing enterprising subjects fashioned for global capitalism, HEFA seeks to form subjectivities along the moral values of solidarity and cooperation

    SiPMs coated with TPB : coating protocol and characterization for NEXT

    Get PDF
    Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless {\beta}{\beta} decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadienne (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.Comment: Submitted to the Journal of Instrumentation on december 26th 201

    Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    Get PDF
    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.We thank Prof. A. Segura of the Universitat de Valencia for the facilities with the sputtering equipment. This work was supported by the project PROMETEO/2009/074 from the Generalitat Valenciana.Reyes Tolosa, MD.; Damonte, LC.; Brine, H.; Bolink, HJ.; Hernández Fenollosa, MDLÁ. (2013). Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition. Nanoscale Research Letters. 8:135-144. https://doi.org/10.1186/1556-276X-8-135S1351448Franklin JB, Zou B, Petrov P, McComb DW, Ryanand MP, McLachlan MA,J: Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. Mater Chem 2011, 21: 8178–8182. 10.1039/c1jm10658aJaroslav B, Andrej V, Marie N, Šuttab P, Miroslav M, František U: Cryogenic pulsed laser deposition of ZnO. Vacuum 2012, 86(6):684–688. 10.1016/j.vacuum.2011.07.033Jae Bin L, Hyeong Joon K, Soo Gil K, Cheol Seong H, Seong-Hyeon H, Young Hwa S, Neung Hun L: Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films 2003, 435: 179–185. 10.1016/S0040-6090(03)00347-XXionga DP, Tanga XG, Zhaoa WR, Liua QX, Wanga YH, Zhoub SL: Deposition of ZnO and MgZnO films by magnetron sputtering. Vacuum 2013, 89: 254–256.Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA: Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 2011, 158(11):E107-E110.Ming F, Ji Z: Mechanism of the electrodeposition of ZnO nanosheets below room temperature. J Electrochem Soc 2010, 157(8):D450-D453. 10.1149/1.3447738Pullini D, Pruna A, Zanin S, Busquets Mataix D: High-efficiency electrodeposition of large scale ZnO nanorod arrays for thin transparent electrodes. J Electrochem Soc 2012, 159: E45-E51. 10.1149/2.093202jesPruna A, Pullini D, Busquets Mataix D: Influence of deposition potential on structure of ZnO nanowires synthesized in track-etched membranes. J Electrochem Soc 2012, 159: E92-E98. 10.1149/2.003205jesMarotti RE, Giorgi P, Machado G, Dalchiele EA: Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells 2009, 90(15):2356–2361.Yeong Hwan K, Myung Sub K, Jae Su Y: Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers. Nanoscale Res Lett 2012, 7: 13. 10.1186/1556-276X-7-13Elias J, Tena-Zaera R, Lévy-Clément C: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films 2007, 515(24):8553–8557. 10.1016/j.tsf.2007.04.027Zhai Y, Zhai S, Chen G, Zhang K, Yue Q, Wang L, Liu J, Jia J: Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J Electroanal Chem 2011, 656: 198–205. 10.1016/j.jelechem.2010.11.020Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA: ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 2011, 158(7):D452-D455. 10.1149/1.3593004Gouxa A, Pauporté T, Chivot J, Lincot D: Temperature effects on ZnO electrodeposition. Electrochim Acta 2005, 50(11):2239–2248. 10.1016/j.electacta.2004.10.007Kwok WM, Djurisic , Aleksandra B, Leung , Yu H, Li D, Tam KH, Phillips DL, Chan WK: Influence of annealing on stimulated emission in ZnO nanorods. Appl Phys Lett 2006, 89(18):183112. 183112–3 183112–3 10.1063/1.2378560Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J: Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices and Microstructures 2007, 42: 461–467. 10.1016/j.spmi.2007.04.068Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA: The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 2011, 86: 101–105. 10.1016/j.vacuum.2011.04.025Michael B, Mohammad Bagher R, Sayyed-Hossein K, Wojtek W, Kourosh K-z: Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers. Mater Lett 2010, 64: 291–294. 10.1016/j.matlet.2009.10.065Jang Bo S, Hyuk C, Sung-O K: Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers. J Nanomater 2011, 2011: 6.Peiro AM, Punniamoorthy R, Kuveshni G, Boyle DS, Paul O’B, Donal DC, Bradley , Jenny N, Durrant JR: Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 2006, 16(21):2088–2096. 10.1039/b602084dVallet-Regí M, Salinas AJ, Arcos D: From the bioactive glasses to the star gels. J Mater Sci Mater Med 2006, 17: 1011–1017.Peulon S, Lincot D: Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J Electrochem Soc 1998, 145: 864. 10.1149/1.1838359Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D: Electrodeposition of ZnO thin films on n-Si(100). Sol. Energy Mater. Sol. Cells 2001, 70: 245. 10.1016/S0927-0248(01)00065-4Courtney IA, Dahn JR: Electrochemical and in situ X‐ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 1997, 144(6):2045–2052. 10.1149/1.183774

    The epitaxy of gold

    Full text link
    corecore