13 research outputs found

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Utilization of Mental Health Services for Children Relative to Social Class. A Pilot Study

    Get PDF
    Two groups of children were selected from those evaluated and treated over a two-year period. The study attempted to contrast the mental health care needs and the health care delivery system of children from the uppermost classes against those of the lowest classes. Very few diagnostic discriminators were found. Prevalence of intellectual dysfunctions In the lower classes and neuroses in the upper classes did not correlate with behavior pattern of acting out or acting in. Autistic psychoses were found almost exclusively among the upper classes; suicidality almost exclusively In the lower classes. Upper class children were more frequently referred by their private family physicians, lower class children by agencies and particularly by the Emergency Room. An attempt at followup indicated the probability that lower class clients tended to terminate treatment prematurely, a tendency that was totally equilibrated by the tendency of upper class clients not to enter into treatment at all

    The phenotypic and genotypic spectrum of epilepsy and intellectual disability in adults: Implications for genetic testing

    No full text
    OBJECTIVE: The phenotypic and genotypic spectrum of adult patients with epilepsy and intellectual disability (ID) is less clear than in children. We investigated an adult patient cohort to further elucidate this and inform the genetic testing approach. METHODS: Fifty-two adult patients (30 male, 22 female) with epilepsy, at least mild ID and no known genetic or acquired cause were included and phenotyped. Variants identified through exome sequencing were evaluated using ACMG criteria. Identified variants were compared with commercially available gene panels. Cluster analysis of two features, age at seizure onset and age at ascertainment of cognitive deficits, was performed. RESULTS: Median age was 27 years (range 20-57 years) with median seizure onset at 3 years and median ascertainment of cognitive deficits at 1 year. Likely pathogenic/pathogenic variants were identified in 16/52 patients (31%) including 14 (27%) single nucleotide variants and 2 (4%) copy number variants. Simulated yield of commercial gene panels varied between 13% in small (≤144 genes) and 27% in large panels (≥1478 genes). Cluster analysis (optimal number 3 clusters) identified a cluster with early seizure onset and early developmental delay (developmental and epileptic encephalopathy, n=26), a cluster with early developmental delay but late seizure onset (ID with epilepsy, n=16) and a third cluster with late ascertainment of cognitive deficits and variable seizure onset (n=7). The smaller gene panels particularly missed the genes identified in the cluster with early ascertainment of cognitive deficits and later onset of epilepsy (0/4) as opposed to the cluster with developmental and epileptic encephalopathy (7/10). SIGNIFICANCE: Our data indicates that adult patients with epilepsy and ID represent a heterogeneous cohort that includes grown-up patients with DEE but also patients with primary ID and later onset of epilepsy. To maximize diagnostic yield in this cohort either large gene panels or exome sequencing should be used
    corecore