129 research outputs found

    Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway

    Get PDF
    The past decade has seen a significant increase in the number of potentially tolerogenic therapies for treatment of new-onset diabetes. However, most treatments are antigen nonspecific, and the mechanism for the maintenance of long-term tolerance remains unclear. In this study, we developed an antigen-specific therapy, insulin-coupled antigen-presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, decreased cytokine production, and induction of anergy. Moreover, we show that robust long-term tolerance depends on the programmed death 1 (PD-1)–programmed death ligand (PD-L)1 pathway, not the distinct cytotoxic T lymphocyte–associated antigen 4 pathway. Anti–PD-1 and anti–PD-L1, but not anti–PD-L2, reversed tolerance weeks after tolerogenic therapy by promoting antigen-specific T cell proliferation and inflammatory cytokine production directly in infiltrated tissues. PD-1–PD-L1 blockade did not limit T regulatory cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical role for PD-1–PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting that PD-1–PD-L1 interactions form part of a common pathway to selectively maintain tolerance within the target tissues

    BPIFB1 is a lung-specific autoantigen associated with interstitial lung disease.

    Get PDF
    Interstitial lung disease (ILD) is a complex and heterogeneous disorder that is often associated with autoimmune syndromes. Despite the connection between ILD and autoimmunity, it remains unclear whether ILD can develop from an autoimmune response that specifically targets the lung parenchyma. We examined a severe form of autoimmune disease, autoimmune polyglandular syndrome type 1 (APS1), and established a strong link between an autoimmune response to the lung-specific protein BPIFB1 (bactericidal/permeability-increasing fold-containing B1) and clinical ILD. Screening of a large cohort of APS1 patients revealed autoantibodies to BPIFB1 in 9.6% of APS1 subjects overall and in 100% of APS1 subjects with ILD. Further investigation of ILD outside the APS1 disorder revealed BPIFB1 autoantibodies present in 14.6% of patients with connective tissue disease-associated ILD and in 12.0% of patients with idiopathic ILD. The animal model for APS1, Aire⁻/⁻ mice, harbors autoantibodies to a similar lung antigen (BPIFB9); these autoantibodies are a marker for ILD. We found that a defect in thymic tolerance was responsible for the production of BPIFB9 autoantibodies and the development of ILD. We also found that immunoreactivity targeting BPIFB1 independent of a defect in Aire also led to ILD, consistent with our discovery of BPIFB1 autoantibodies in non-APS1 patients. Overall, our results demonstrate that autoimmunity targeting the lung-specific antigen BPIFB1 may contribute to the pathogenesis of ILD in patients with APS1 and in subsets of patients with non-APS1 ILD, demonstrating the role of lung-specific autoimmunity in the genesis of ILD

    Plasmacytoid Precursor Dendritic Cells From NOD Mice Exhibit Impaired Function : Are They a Component of Diabetes Pathogenesis?

    Get PDF
    OBJECTIVE—Plasmacytoid precursor dendritic cell facilitating cells (p-preDC FCs) play a critical role in facilitation of syngeneic and allogeneic hematopoietic stem cell (HSC) engraftment. Here, we evaluated the phenotype and function of CD8+/TCR− FCs from NOD mice

    The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells

    Get PDF
    Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter

    Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice

    Get PDF
    Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis

    IL-21 Limits Peripheral Lymphocyte Numbers through T Cell Homeostatic Mechanisms

    Get PDF
    IL-21, a member of the common gamma-chain utilizing family of cytokines, participates in immune and inflammatory processes. In addition, the cytokine has been linked to autoimmunity in humans and rodents.To investigate the mechanism whereby IL-21 affects the immune system, we investigated its role in T cell homeostasis and autoimmunity in both non-autoimmune C57BL/6 and autoimmune NOD mice. Our data indicate that IL-21R knockout C57BL/6 and NOD mice show increased size of their lymphocyte population and decreased homeostatic proliferation. In addition, our experimental results demonstrate that IL-21 inhibits T cell survival. These data suggest that IL-21 acts to limit the size of the T cell pool. Furthermore, our data suggest IL-21 may contribute to the development of autoimmunity.Taken together, our results suggest that IL-21 plays a global role in regulating T cell homeostasis, promoting the continuous adaptation of the T cell lymphoid space

    Human Cord Blood Stem Cell-Modulated Regulatory T Lymphocytes Reverse the Autoimmune-Caused Type 1 Diabetes in Nonobese Diabetic (NOD) Mice

    Get PDF
    Background: The deficit of pancreatic islet b cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D. Methodology/Principal Findings: Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4 + CD62L + Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet b-cell regeneration to increase b-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4 + CD62L + Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets. Conclusions/Significance: These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes

    CD28null CD4 T-cell expansions in autoimmune disease suggest a link with cytomegalovirus infection

    Get PDF
    Immunosenescence is thought to contribute to the increase of autoimmune diseases in older people. Immunosenescence is often associated with the presence of an expanded population of CD4 T cells lacking expression of CD28 (CD28null). These highly cytotoxic CD4 T cells were isolated from disease-affected tissues in patients with rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, or other chronic inflammatory diseases and their numbers appeared to be linked to disease severity. However, we recently demonstrated that the common herpes virus, cytomegalovirus (CMV), not ageing, is the major driver of this subset of cytotoxic T cells. In this review, we discuss how CMV might potentiate and exacerbate autoimmune disease through the expansion of CD28null CD4 T cells

    Effects of Astragalus Polysaccharide on Immune Responses of Porcine PBMC Stimulated with PRRSV or CSFV

    Get PDF
    BACKGROUND: Astragalus polysaccharide (APS) has been used as an immunomodulator that can enhance immune responses, whereas the immunomodulatory effects of APS on porcine peripheral blood mononuclear cells (PBMCs) exposed to porcine reproductive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: Porcine PBMCs were cultured in complete RPMI media in the presence of the R98-strain of PRRSV (5×10(4) TCID(50)/ml) or C-strain of CSFV (10(3) TCID(50)/ml) with or without APS. The expression of mRNA for CD28, cytotoxic T-lymphocyte antigen 4 (CTLA-4), transforming growth factor-β (TGF-β), interleukin 2 (IL-2) and IL-10 was assayed by TaqMan real-time RT-PCR. The expression of mRNA for CD28 and CTLA-4 increased at 24 h after stimulation of PBMCs with CSFV and the increased production of CTLA-4 was confirmed by western blot analysis, whereas the increases were inhibited by the addition of APS. In addition, APS alone upregulated IL-2 and TGF-β mRNA expression in PBMCs and the addition of APS had the capacity to prevent a further increase in IL-2 mRNA expression in PBMCs during CSFV or PRRSV infection, but had no effect on TGF-β mRNA expression. The production of tumor necrosis factor-alpha (TNF-α) increased at 12 h after stimulation with PRRSV or CSFV, but not with PRRSV plus APS or CSFV plus APS, whereas the addition of APS to PBMCs infected with PRRSV or CSFV promoted IL-10 mRNA expression. CONCLUSIONS: We suggested that APS had immunomodulatory effects on cells exposed to PRRSV or CSFV. It might be that APS via different mechanisms affects the activities of immune cells during either PRRSV or CSFV infection. This possibility warrants further studies to evaluate whether APS would be an effective adjuvant in vaccines against PRRSV or CSFV
    corecore