127 research outputs found

    MODELISATION DES SOLUTIONS AQUEUSES D’ELECTROLYTES DU TYPE 3-1 MODELLING OF AQUEOUS ELECTROLYTES SOLUTIONS OF 3-1 TYPE

    Get PDF
    Pour modéliser les coefficients d’activité des solutions aqueuses d’électrolytes du type 3-1, nous avons repris la théorie originale de Pitzer concernant l’énergie d’excès de Gibbs pour les solutions aqueusesd’électrolyte. Le modèle a été appliquépour 11 systèmes incluant des électrolytes du type 3-1. La performance de ce modèle a été comparée avec d’autres modèles existant dans la littérature. Les résultats montrent que le modèle de Pitzer peut représenter les coefficients d’activité des électrolytes dans des solutions aqueuses avec une déviation standard comparable aux autres modèles et dans la plupart des cas meilleure que les autres. To model the activity coefficients of aqueous solutions of 3-1 electrolytes, we took again the original theory of Pitzer concerning the excess Gibbs energy for the aqueous solutions ofelectrolytes. The model was applied for 11 systems including 3-1 electrolytes. The performance of this model was compared withother models existing in the literature. The results show that the model of Pitzer can represent the mean ionic activitycoefficients of 3-1 electrolytes in aqueous solutions with a standard deviation comparable with the other models and in the majority of the cases better than the others

    N-ftaloil-glicin-hidroksamska kiselina kao kelator željeza u serumu štakora

    Get PDF
    The aim of this study was to investigate the activity of N-phthaloyl-glycine-hydroxamic acid (Phth-Gly-HA) as a new iron chelator in vivo to be used in iron overload diseases. After intraperitoneal application of Phth-Gly-HA to male rats (1 mg kg1 body mass) once a day for seven days, iron serum level decreased by 21%, whereas the iron value dropped by 32% in female rats (1.5 mg kg1 body mass). The results indicate that the tested substance has the ability to bind serum iron by complexation. Besides transferrin iron release, mobilization of ferritin iron is also possibleU cilju pronalaženja novog efikasnog kelatora koji bi mogao poslužiti u liječenju bolesti izazvanih viškom željeza, u ovom je radu ispitano djelovanje N-ftaloil-glicin-hidroksamske kiseline (Phth-Gly-HA) in vivo. Istraživan je utjecaj kelatora na razinu željeza u serumu štakora nakon intraperitonealne primjene vodene otopine Phth-Gly-HA (0,1 mg mL1) jednom dnevno tijekom 7 dana. Kontrolne su životinje primale fiziološku otopinu. Kod mužjaka injektiranje test supstancije (1 mg kg1) uzrokovalo je pad serumskog željeza za 21%. Kod ženki je nakon tretmana (1,5 mg kg1) izmjereno sniženje razine željeza za 35%. Rezultati pokazuju da ispitivana supstanca ima sposobnost kompleksiranja serumskog željeza, pretežno transferinskog, ali da postoji mogućnost mobilizacije željeza i iz feritinskih zaliha

    Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Get PDF
    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (α-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition

    Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM(4-) siderophore analogues of varied linker length

    Get PDF
    Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM(4-)) to five, six and eight (5-, 6-, 8-LICAM(4-), respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM(4-) structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM(4-) is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM(4-) but decreases for 6- and 8-LICAM(4-). The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288

    Purification and Structural Characterization of Siderophore (Corynebactin) from Corynebacterium diphtheriae

    Get PDF
    During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin

    Protonation States of Remote Residues Affect Binding-Release Dynamics of the Ligand but not the Conformation of apo Ferric Binding Protein

    Full text link
    We have studied the apo (Fe3+ free) form of periplasmic ferric binding protein (FbpA) under different conditions and we have monitored the changes in the binding and release dynamics of H2PO4- that acts as a synergistic anion in the presence of Fe3+. Our simulations predict a dissociation constant of 2.2±\pm0.2 mM which is in remarkable agreement with the experimentally measured value of 2.3±\pm0.3 mM under the same ionization strength and pH conditions. We apply perturbations relevant for changes in environmental conditions as (i) different values of ionic strength (IS), and (ii) protonation of a group of residues to mimic a different pH environment. Local perturbations are also studied by protonation or mutation of a site distal to the binding region that is known to mechanically manipulate the hinge-like motions of FbpA. We find that while the average conformation of the protein is intact in all simulations, the H2PO4- dynamics may be substantially altered by the changing conditions. In particular, the bound fraction which is 20%\% for the wild type system is increased to 50%\% with a D52A mutation/protonation and further to over 90%\% at the protonation conditions mimicking those at pH 5.5. The change in the dynamics is traced to the altered electrostatic distribution on the surface of the protein which in turn affects hydrogen bonding patterns at the active site. The observations are quantified by rigorous free energy calculations. Our results lend clues as to how the environment versus single residue perturbations may be utilized for regulation of binding modes in hFbpA systems in the absence of conformational changes.Comment: 26 pages, 4 figure

    Perturbation-Response Scanning Reveals Ligand Entry-Exit Mechanisms of Ferric Binding Protein

    Get PDF
    We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the “conformational selection” model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion
    • …
    corecore