13 research outputs found

    An Intelligent Archive Testbed Incorporating Data Mining

    Get PDF
    Many significant advances have occurred during the last two decades in remote sensing instrumentation, computation, storage, and communication technology. A series of Earth observing satellites have been launched by U.S. and international agencies and have been operating and collecting global data on a regular basis. These advances have created a data rich environment for scientific research and applications. NASA s Earth Observing System (EOS) Data and Information System (EOSDIS) has been operational since August 1994 with support for pre-EOS data. Currently, EOSDIS supports all the EOS missions including Terra (1999), Aqua (2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively capturing, processing and archiving several terabytes of standard data products each day. It has also been distributing these data products at a rate of several terabytes per day to a diverse and globally distributed user community (Ramapriyan et al. 2009). There are other NASA-sponsored data system activities including measurement-based systems such as the Ocean Data Processing System and the Precipitation Processing system, and several projects under the Research, Education and Applications Solutions Network (REASoN), Making Earth Science Data Records for Use in Research Environments (MEaSUREs), and the Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) programs. Together, these activities provide a rich set of resources constituting a value chain for users to obtain data at various levels ranging from raw radiances to interdisciplinary model outputs. The result has been a significant leap in our understanding of the Earth systems that all humans depend on for their enjoyment, livelihood, and survival. The trend in the community today is towards many distributed sets of providers of data and services. Despite this, visions for the future include users being able to locate, fuse and utilize data with location transparency and high degree of interoperability, and being able to convert data to information and usable knowledge in an efficient, convenient manner, aided significantly by automation (Ramapriyan et al. 2004; NASA 2005). We can look upon the distributed provider environment with capabilities to convert data to information and to knowledge as an Intelligent Archive in the Context of a Knowledge Building system (IA-KBS). Some of the key capabilities of an IA-KBS are: Virtual Product Generation, Significant Event Detection, Automated Data Quality Assessment, Large-Scale Data Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Requesting (Ramapriyan et al. 2004)

    Baffin Island Expedition, 1953: A Preliminary Field Report

    Get PDF
    Contains description and brief summaries of results of the second Baffin Island Expedition of the Arctic Institute of North America, May-Sept. 1953. The 13-man party carried out a program in the Penny Highland region of Cumberland Peninsula, centering on Pangnirtung Pass. Glaciological work on the Penny Icecap and Highway Glacier included studies of glacier physics, seismic work, and meteorological observations on bedrock geology and structure are given. Corrie formation and the geomorphology of Pangnirtung Pass were studied. Specimens of local fauna were collected and biological studies of some species were made. Comparisons of the vegetation of Penny Highland and East and North Greenland were made through extensive plant collections. Eight peaks were climbed and their altitudes determined. A list of 17 new names approved by the Canadian Board on Geographical Names is appended

    Transcriptomic Analysis of Human Retinal Detachment Reveals Both Inflammatory Response and Photoreceptor Death

    Get PDF
    Background Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. Methodology/Principal Findings Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. Conclusions/Significance This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery
    corecore