110 research outputs found

    Brushless DC Synchro Drive System

    Get PDF
    A brushless dc synchro drive system for use in teleoperators is investigated. T h e permanent-magnet synchronous machine is described and a mathematical model is presented. A dc-to-ac inverter is described and a current-band control is developed. Using the current-band inverter control system, an electromagnetic torque control scheme is developed. Through computer simulation and analysis, an operating region for this torque control method is determined. A synchro drive teleoperator system, wherein a synchronizing torque is produced electrically between the rotors of two brushless dc machines, is described which implements the previous electromagnetic torque control. A mathematical model for the teleoperator system is described and the system dynamic performance is demonstrated by computer simulation. An alternative synchro drive system configuration is also presented in which the quiescent power losses and risk of rotor demagnetization are reduced. A mathematical model is developed for this alternate configuration and a computer simulation is used to illustrate the system response

    Morphogen Transport in Epithelia

    Full text link
    We present a general theoretical framework to discuss mechanisms of morphogen transport and gradient formation in a cell layer. Trafficking events on the cellular scale lead to transport on larger scales. We discuss in particular the case of transcytosis where morphogens undergo repeated rounds of internalization into cells and recycling. Based on a description on the cellular scale, we derive effective nonlinear transport equations in one and two dimensions which are valid on larger scales. We derive analytic expressions for the concentration dependence of the effective diffusion coefficient and the effective degradation rate. We discuss the effects of a directional bias on morphogen transport and those of the coupling of the morphogen and receptor kinetics. Furthermore, we discuss general properties of cellular transport processes such as the robustness of gradients and relate our results to recent experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly Drosophila

    Atomic Layer Deposition of Nanolaminate Structures of Alternating PbTe and PbSe Thermoelectric Films

    Get PDF
    For this study PbTe and PbSe thin film nanolaminates have been prepared on silicon substrates with native oxide by Atomic Layer Deposition (ALD) using lead(II)bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (Pb(C11H19O2)(2), (trimethylsilyl) telluride ((Me3Si)2Te) and bis-(triethyl silyl) selane ((Et3Si)2Se) as ALD precursors for lead, tellurium and selenium. The experimental evidence revealed the ALD growth of lead telluride and lead selenide followed the Vollmer-Weber island growth mode. We found a strong dependence of the nucleation process on the temperature. In this paper, we present the optimized conditions for growing PbTe and PbSe thin film nanolaminates within the ALD process window range of 170 degrees C to 210 degrees C and discuss an early nano-scale PbTe/PbSe bilayer structure. Results of various physical characterizations techniques and analysis are reported

    Atomic layer deposition of nanolaminate structures of alternating PbTe and PbSe thermoelectric films

    Get PDF
    For this study PbTe and PbSe thin film nanolaminates have been prepared on silicon substrates with native oxide by Atomic Layer Deposition (ALD) using lead(II)bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (Pb(C11H19O2)2), (trimethylsilyl) telluride ((Me3Si)2Te) and bis-(triethyl silyl) selane ((Et3Si)2Se) as ALD precursors for lead, tellurium and selenium. The experimental evidence revealed the ALD growth of lead telluride and lead selenide followed the Vollmer-Weber island growth mode. We found a strong dependence of the nucleation process on the temperature. In this paper, we present the optimized conditions for growing PbTe and PbSe thin film nanolaminates within the ALD process window range of 170°C to 210°C and discuss an early nano-scale PbTe/PbSe bilayer structure. Results of various physical characterizations techniques and analysis are reported

    Heteroarylguanidines as Allosteric Modulators of ASIC1a and ASIC3 Channels.

    Get PDF
    Acid-sensing ion channels (ASICs) are neuronal Na <sup>+</sup> -selective ion channels that open in response to extracellular acidification. They are involved in pain, fear, learning, and neurodegeneration after ischemic stroke. 2-Guanidine-4-methylquinazoline (GMQ) was recently discovered as the first nonproton activator of ASIC3. GMQ is of interest as a gating modifier and pore blocker of ASICs. It has however a low potency, and exerts opposite effects on ASIC1a and ASIC3. To further explore the molecular mechanisms of GMQ action, we have used the guanidinium moiety of GMQ as a scaffold and tested the effects of different GMQ derivatives on the ASIC pH dependence and maximal current. We report that GMQ derivatives containing quinazoline and quinoline induced, as GMQ, an alkaline shift of the pH dependence of activation in ASIC3 and an acidic shift in ASIC1a. Another group of 2-guanidinopyridines shifted the pH dependence of both ASIC1a and ASIC3 to more acidic values. Several compounds induced an alkaline shift of the pH dependence of ASIC1a/2a and ASIC2a/3 heteromers. Compared to GMQ, guanidinopyridines showed a 20-fold decrease in the IC <sub>50</sub> for ASIC1a and ASIC3 current inhibition at pH 5. Strikingly, 2-guanidino-quinolines and -pyridines showed a concentration-dependent biphasic effect that resulted at higher concentrations in ASIC1a and ASIC3 inhibition (IC <sub>50</sub> > 100 μM), while causing at lower concentration a potentiation of ASIC1a, but not ASIC3 currents (EC <sub>50</sub> ≈ 10 μM). In conclusion, we describe a new family of small molecules as ASIC ligands and identify an ASIC subtype-specific potentiation by a subgroup of these compounds

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA

    Get PDF
    Endonucleolytic cleavage of the coding region determinant (CRD) of c-myc mRNA appears to play a critical role in regulating c-myc mRNA turnover. Using 32P-labeled c-myc CRD RNA as substrate, we have purified and identified two endoribonucleases from rat liver polysomes that are capable of cleaving the transcript in vitro. A 17-kDa enzyme was identified as RNase1. Apurinic/apyrimidinic (AP) DNA endonuclease 1 (APE1) was identified as the 35-kDa endoribonuclease that preferentially cleaves in between UA and CA dinucleotides of c-myc CRD RNA. APE1 was further confirmed to be the 35-kDa endoribonuclease because: (i) the endoribonuclease activity of the purified 35-kDa native enzyme was specifically immuno-depleted with APE1 monoclonal antibody, and (ii) recombinant human APE1 generated identical RNA cleavage patterns as the native liver enzyme. Studies using E96A and H309N mutants of APE1 suggest that the endoribonuclease activity for c-myc CRD RNA shares the same active center with the AP-DNA endonuclease activity. Transient knockdown of APE1 in HeLa cells led to increased steady-state level of c-myc mRNA and its half-life. We conclude that the ability to cleave RNA dinucleotides is a previously unidentified function of APE1 and it can regulate c-myc mRNA level possibly via its endoribonuclease activity

    Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.</p> <p>Results</p> <p>We propose a new idea to construct an integrative profile for each residue in a protein by combining its hydrophobic and evolutionary information. A support vector machine (SVM) ensemble is then developed, where SVMs train on different pairs of positive (interface sites) and negative (non-interface sites) subsets. The subsets having roughly the same sizes are grouped in the order of accessible surface area change before and after complexation. A self-organizing map (SOM) technique is applied to group similar input vectors to make more accurate the identification of interface residues. An ensemble of ten-SVMs achieves an MCC improvement by around 8% and F1 improvement by around 9% over that of three-SVMs. As expected, SVM ensembles constantly perform better than individual SVMs. In addition, the model by the integrative profiles outperforms that based on the sequence profile or the hydropathy scale alone. As our method uses a small number of features to encode the input vectors, our model is simpler, faster and more accurate than the existing methods.</p> <p>Conclusions</p> <p>The integrative profile by combining hydrophobic and evolutionary information contributes most to the protein-protein interaction prediction. Results show that evolutionary context of residue with respect to hydrophobicity makes better the identification of protein interface residues. In addition, the ensemble of SVM classifiers improves the prediction performance.</p> <p>Availability</p> <p>Datasets and software are available at <url>http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm</url>.</p

    A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome.</p> <p>Results</p> <p>Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation.</p> <p>Conclusions</p> <p>In addition to nucleus, the chloroplast is another important organelle that generates a number of small RNAs. Many members of csRNA families are highly sensitive to heat stress. Some csRNAs respond to heat stress by silencing target genes. We suggest that proper temperature is important for production of chloroplast small RNAs, which are associated with plant resistance to abiotic stress.</p
    corecore