19,312 research outputs found

    An Ecological Study of Timberline and Alpine Areas, Mount Lincoln, Park County, Colorado

    Get PDF
    During the short alpine growing season of 1945 the authors had the opportunity of studying conditions and biota on Mount Lincoln, Park County, Colorado, in an attempt to evaluate the ecological conditions and animal communities of the area. Of the large amount of taxonomic and ecological zoology published on the state, most has been in the field of autecology, and, except in the province of aquatic studies, little has appeared bearing on synecological relations, especially among invertebrates. The marked differences between the physiography, climatology, and biology of timberline, alpine, and other stations seemed to offer a field well worthy of investigation. Since the work was done, other factors have been introduced which have greatly altered the nearly primitive conditions encountered at the time of the investigation. One of the areas has been entirely destroyed by the formation of a water storage lake, and others have been affected through heavy summer grazing by bands of sheep. The material published on the Mount Lincoln area is very limited. Cary (1911) was concerned with similar areas in other parts of the state, but apparently he did not work around the mountains at the head of the South Platte. The most detailed paper on the region is that of Patton and his collaborators (1912) which covers the physiography very completely. There are scattered references to the animal life of the vicinity in Coues (1874), Sclater (1912), Warren (1942), and elsewhere. The most complete published reports on the animal life of the region are those of Brewer (1871) and Allen (1872, 1876a, 1876b); the first of Allen\u27s papers is the source of most of Coues\u27 references to the Mount Lincoln avifauna. None of these papers deals with the invertebrates, save for comments by Brewer on the relative abundance of certain orders of insects

    An Age Constraint for the Very Low-Mass Stellar/Brown Dwarf Binary 2MASS J03202839-0446358AB

    Full text link
    2MASS J03202839-0446358AB is a recently identified, late-type M dwarf/T dwarf spectroscopic binary system for which both the radial velocity orbit for the primary and spectral types for both components have been determined. By combining these measurements with predictions from four different sets of evolutionary models, we determine a minimum age of 2.0+/-0.3 Gyr for this system, corresponding to minimum primary and secondary masses of 0.080 Msun and 0.053 Msun, respectively. We find broad agreement in the inferred age and mass constraints between the evolutionary models, including those that incorporate atmospheric condensate grain opacity; however, we are not able to independently assess their accuracy. The inferred minimum age agrees with the kinematics and absence of magnetic activity in this system, but not the rapid rotation of its primary, further evidence of a breakdown in angular momentum evolution trends amongst the lowest luminosity stars. Assuming a maximum age of 10 Gyr, we constrain the orbital inclination of this system to i >~ 53 degrees. More precise constraints on the orbital inclination and/or component masses of 2MASS J0320-0446AB, through either measurement of the secondary radial velocity orbit (optimally in the 1.2-1.3 micron band) or detection of an eclipse (only 0.3% probability based on geometric constraints), would yield a bounded age estimate for this system, and the opportunity to use it as an empirical test for brown dwarf evolutionary models at late ages.Comment: 8 pages, 2 figures, accepted for publication to Astonomical Journa

    Acetone in the Atmosphere of Hong Kong, Abundance, Sources and Photochemical Precursors

    Get PDF
    Intensive field measurements were carried out at a mountain site and an urban site at the foot of the mountain from September to November 2010 in Hong Kong. Acetone was monitored using both canister air samples and 2,4-dinitrophenylhydrazine cartridges. The spatiotemporal patterns of acetone showed no difference between the two sites (p > 0.05), and the mean acetone mixing ratios on O3 episode days were higher than those on non-O3 episode days at both sites (p < 0.05). The source contributions to ambient acetone at both sites were estimated using a receptor model i.e. Positive Matrix Factorization (PMF). The PMF results showed that vehicular emission and secondary formation made the most important contribution to ambient acetone, followed by the solvent use at both sites. However, the contribution of biogenic emission at the mountain site was significantly higher than that at the urban site, whereas biomass burning made more remarkable contribution at the urban site than that at the mountain site. The mechanism of oxidation formation of acetone was investigated using a photochemical box model. The results indicated that i-butene was the main precursor of secondary acetone at the mountain site, while the oxidation of i-butane was the major source of secondary acetone at the urban site.Department of Civil and Environmental Engineerin

    The effect of substrate roughness on air entrainment in dip coating

    Get PDF
    YesDynamic wetting failure was observed in the simple dip coating flow with a series of substrates, which had a rough side and a comparatively smoother side. When we compared the air entrainment speeds on both sides, we found a switch in behaviour at a critical viscosity. At viscosity lower than a critical value, the rough side entrained air at lower speeds than the smooth side. Above the critical viscosity the reverse was observed, the smooth side entraining air at lower speed than the rough side. Only substrates with significant roughness showed this behaviour. Below a critical roughness, the rough side always entrained air at lower speeds than the smooth side. These results have both fundamental and practical merits. They support the hydrodynamic theory of dynamic wetting failure and imply that one can coat viscous fluids at higher speeds than normal by roughening substrates. A mechanism and a model are presented to explain dynamic wetting failure on rough surfaces

    Sources of the ultraheavy cosmic rays

    Get PDF
    The suggestions that the source abundances of cosmic ray nuclei heavier then Fe differ significantly from Solar System abundances are not well supported by the data without assuming preferential acceleration. The Solar System abundances of Pb and Bi are split into r-, standard s-, and cyclic 8-process components; the apprarent deficiency of Pb seen in the HEAO-3 Heavy Nuclei Experiment data might indicate an absence of Pb from the recycling 8-process

    Identification and characterization of extraterrestrial non-chondritic interplanetary dust

    Get PDF
    Interplanetary dust particles (IDPs) are among the most pristine and primitive extraterrestrial materials available for direct study. Most of the stratospheric particles selected for study from the JSC Curatorial Collection were chondritic in composition (major element abundances within a factor of two of chondritic meteorites) because this composition virtually ensures that the particle is from an extraterrestrial source. It is likely that some of the most interesting classes of IDP's have not been recognized simply because they are not chondritic or do not fit established criteria for extraterrestrial origin. Indeed, mass spectroscopy data from the Giotto Flyby of comet Halley indicate that a substantial fraction of the dust is in the submicron size range and that a majority of these particles contain C, H, O, and/or N as major elements. The preponderance of CHON particles in the coma of Halley implies that similar particles may exist in the JSC stratospheric dust collection. However, the JSC collection also contains a variety of stratospheric contaminants from terrestrial sources which have these same characteristics. Because established criteria for extraterrestrial origin may not apply to such particles in individual cases, and integrated approach is required in which a variety of analysis techniques are applied to the same particle. Non-chondritic IDP's, like their chondritic counterparts, can be used to elucidate pre- and early solar system processes and conditions. The study of non-chondritic IDP's may additionally yield unique information which bears on the nature of cometary bodies and the processing of carbonaceous and other low atomic number materials. A suite of complementary techniques, including Low Voltage Scanning Electron Microscopy (LVSEM), Energy-Dispersive X-ray Microanalysis (EDX), Secondary Ion Mass Spectrometry (SIMS) isotope-ratio imaging and Analytical Electron Microscopy (AEM), were utilized to accomplish the following two objectives: (1) to develop criteria for the unequivocal identification of extraterrestrial non-chondritic IDP's; and (2) to infer IDP parent body, solar nebula, and pre-solar conditions through the study of phases, textures, and components contained within non-chondritic IDP's. The general approach taken is designed to maximize the total information obtained from each particle. Techniques will be applied in order from least destructive to most destructive
    corecore