1,176 research outputs found
Study of the 12C+12C fusion reactions near the Gamow energy
The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from
E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low
hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new
resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV,
which lies at the high-energy tail of the Gamow peak. The resonance increases
the present non-resonant reaction rate of the alpha channel by a factor of 5
near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow
energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an
underground accelerator placed in a salt mine in combination with a high
efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let
Recommended from our members
An algal enzyme required for biosynthesis of the most abundant marine carotenoids.
Fucoxanthin and its derivatives are the main light-harvesting pigments in the photosynthetic apparatus of many chromalveolate algae and represent the most abundant carotenoids in the world's oceans, thus being major facilitators of marine primary production. A central step in fucoxanthin biosynthesis that has been elusive so far is the conversion of violaxanthin to neoxanthin. Here, we show that in chromalveolates, this reaction is catalyzed by violaxanthin de-epoxidase-like (VDL) proteins and that VDL is also involved in the formation of other light-harvesting carotenoids such as peridinin or vaucheriaxanthin. VDL is closely related to the photoprotective enzyme violaxanthin de-epoxidase that operates in plants and most algae, revealing that in major phyla of marine algae, an ancient gene duplication triggered the evolution of carotenoid functions beyond photoprotection toward light harvesting
The Struve-Sahade effect in the optical spectra of O-type binaries I. Main-sequence systems
We present a spectroscopic analysis of four massive binary systems that are
known or are good candidates to display the Struve-Sahade effect (defined as
the apparent strengthening of the secondary spectrum of the binary when the
star is approaching, and the corresponding weakening of the lines when it is
receding).
We use high resolution optical spectra to determine new orbital solutions and
spectral types of HD 165052, HD 100213, HD 159176 and DH Cep. As good knowledge
of the fundamental parameters of the considered systems is necessary to examine
the Struve-Sahade effect. We then study equivalent width variations in the
lines of both components of these binaries during their orbital cycle.
In the case of these four systems, variations appear in the equivalent widths
of some lines during the orbital cycle, but the definition given above can any
longer be valid, since it is now clear that the effect modifies the primary
spectrum as much as the secondary spectrum. Furthermore, the lines affected,
and the way in which they are affected, depend on the considered system. For at
least two of them (HD 100213 and HD 159176) these variations probably reflect
the ellipsoidal variable nature of the system.Comment: 12 pages, 20 figures, in press A&
Neutron Beam Effects on Spin Exchange Polarized He-3
We have observed depolarization effects when high intensity cold neutron
beams are incident on alkali-metal-spin-exchange polarized He-3 cells used as
neutron spin filters. This was first observed as a reduction of the maximum
attainable He-3 polarization and was attributed to a decrease of alkali-metal
polarization, which led us to directly measure alkali-metal polarization and
spin relaxation over a range of neutron fluxes at LANSCE and ILL. The data
reveal a new alkali-metal spin-relaxation mechanism that approximately scales
as the square root of the neutron capture-flux density incident on the cell.
This is consistent with an effect proportional to the recombination-limited ion
concentration, but is much larger than expected from earlier work.Comment: submitted to Physical Review Letter
Identification of a cyclin B1-derived CTL epitope eliciting spontaneous responses in both cancer patients and healthy donors
With the aim to identify cyclin B1-derived peptides with high affinity for HLA-A2, we used three in silico prediction algorithms to screen the protein sequence for possible HLA-A2 binders. One peptide scored highest in all three algorithms, and the high HLA-A2-binding affinity of this peptide was verified in an HLA stabilization assay. By stimulation with peptide-loaded dendritic cells a CTL clone was established, which was able to kill two breast cancer cell lines in an HLA-A2-dependent and peptide-specific manner, demonstrating presentation of the peptide on the surface of cancer cells. Furthermore, blood from cancer patients and healthy donors was screened for spontaneous T-cell reactivity against the peptide in IFN-γ ELISPOT assays. Patients with breast cancer, malignant melanoma, or renal cell carcinoma hosted powerful and high-frequency T-cell responses against the peptide. In addition, when blood from healthy donors was tested, similar responses were observed. Ultimately, serum from cancer patients and healthy donors was analyzed for anti-cyclin B1 antibodies. Humoral responses against cyclin B1 were frequently detected in both cancer patients and healthy donors. In conclusion, a high-affinity cyclin B1-derived HLA-A2-restricted CTL epitope was identified, which was presented on the cell surface of cancer cells, and elicited spontaneous T-cell responses in cancer patients and healthy donors
Suppression of Mott–Hubbard states and metal–insulator transitions in the two-band Hubbard model
I investigate band and Mott insulating states in a two-band Hubbard model, with the aim of understanding the differences between the idealized one-orbital model and the more realistic multi-band case. Using a projection ansatz I show that additional orbitals suppress the metal–insulator transition, leading to a critical coupling of approximately eight times the bare bandwidth. I also demonstrate the effects of orbital ordering, which hinder Mott–Hubbard states and open a bandgap. Since multi-band correlations are common in real materials, this work suggests that very strongly correlated band insulators may be more common than Mott–Hubbard insulators
Filovirus refseq entries: Evaluation and selection of filovirus type variants, Type sequences, And names
Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [<virus name> (<strain>)/<isolation host-suffix>/<country of sampling>/<year of sampling>/<genetic variant designation>-<isolate designation>], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.Other co-authors: Ralf G. Dietzgen, Norman A. Doggett, Olga Dolnik, John M. Dye, Sven Enterlein, Paul W. Fenimore, Pierre Formenty, Alexander N. Freiberg, Robert F. Garry, Nicole L. Garza, Stephen K. Gire, Jean-Paul Gonzalez, Anthony Griffiths, Christian T. Happi, Lisa E. Hensley, Andrew S. Herbert, Michael C. Hevey, Thomas Hoenen, Anna N. Honko, Georgy M. Ignatyev, Peter B. Jahrling, Joshua C. Johnson, Karl M. Johnson, Jason Kindrachuk, Hans-Dieter Klenk, Gary Kobinger, Tadeusz J. Kochel, Matthew G. Lackemeyer, Daniel F. Lackner, Eric M. Leroy, Mark S. Lever, Elke Mühlberger, Sergey V. Netesov, Gene G. Olinger, Sunday A. Omilabu, Gustavo Palacios, Rekha G. Panchal, Daniel J. Park, Jean L. Patterson, Janusz T. Paweska, Clarence J. Peters, James Pettitt, Louise Pitt, Sheli R. Radoshitzky, Elena I. Ryabchikova, Erica Ollmann Saphire, Pardis C. Sabeti, Rachel Sealfon, Aleksandr M. Shestopalov, Sophie J. Smither, Nancy J. Sullivan, Robert Swanepoel, Ayato Takada, Jonathan S. Towner, Guido van der Groen, Viktor E. Volchkov, Valentina A. Volchkova, Victoria Wahl-Jensen, Travis K. Warren, Kelly L. Warfield, and Stuart T. Nichol
Output Type: Lette
Banks' risk assessment of Swedish SMEs
Building on the literatures on asymmetric information and risk taking, this paper applies conjoint experiments to investigate lending officers' probabilities of supporting credit to established or existing SMEs. Using a sample of 114 Swedish lending officers, we test hypotheses concerning how information on the borrower's ability to repay the loan; alignment of risk preferences; and risk sharing affect their willingness to grant credit. Results suggest that features that reduce the risk to the bank and shift the risk to the borrower have the largest impact. The paper highlights the interaction between factors that influence the credit decision. Implications for SMEs, banks and research are discussed
One-dimensional dynamics of the d-electrons in -NaVO
We have studied the electronic properties of the ladder compound
-NaVO, adopting a joint experimental and theoretical
approach. The momentum-dependent loss function was measured using electron
energy-loss spectroscopy in transmission. The optical conductivity derived from
the loss function by a Kramers-Kronig analysis agrees well with our results
from LSDA+U band-structure calculations upon application of an
antiferromagnetic alignment of the V~3 spins along the legs and an
on-site Coulomb interaction U of between 2 and 3 eV. The decomposition of the
calculated optical conductivity into contributions from transitions between
selected energy regions of the DOS reveals the origin of the observed
anisotropy of the optical conductivity. In addition, we have investigated the
plasmon excitations related to transitions between the vanadium states within
an effective 16 site vanadium cluster model. Good agreement between the
theoretical and experimental loss function was obtained using the hopping
parameters derived from the tight binding fit to the band-structure and
moderate Coulomb interactions between the electrons within the ab plane.Comment: 23 pages, 8 figures; submitted to PR
- …