128 research outputs found

    Effect of Strikes Upon Vacations

    Get PDF

    Piezoelectric and optical setup to measure an electrical field: Application to the longitudinal near-field generated by a tapered coax

    Full text link
    We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 um in the direction of the electrical field. Simulations and experiments are presented

    Clinical Decision Support System (CDSS) for the Classification of Atypical Cells in Pleural Effusions

    Get PDF
    AbstractThe objective of this research is to develop a prototype Clinical Decision Support System (CDSS) to aid pathologists in correctly discriminating between reactive mesothelial cells and malignant epithelial cells. Currently, there is great difficulty in visually discriminating between cells that are malignant and cells that are otherwise reactive to antigens present in the effusion. Features have been identified, which can correctly discriminate between benign epithelial cells and malignant epithelial cells with a validation AZ accuracy of ∼ 0.934, training AZ of ∼ 0.937. Using these features, the system trained on visually known cases was shown to find discriminating information in the feature subset of the atypical cases by examining probabilities generated from subjecting the system to atypical cells. While these results are preliminary, they do demonstrate that an intelligent CDSS, which has the potential to discriminate between reactive mesothelial cells and malignant epithelial cells, designed using newly developed and/or revised statistical learning theory (SLT) algorithms, has the potential to be used as a second opinion diagnostic aid by physicians, as they deem appropriate

    Finite Element Analysis of Hepatic Radiofrequency Ablation Probes using Temperature-Dependent Electrical Conductivity

    Get PDF
    BACKGROUND: Few finite element models (FEM) have been developed to describe the electric field, specific absorption rate (SAR), and the temperature distribution surrounding hepatic radiofrequency ablation probes. To date, a coupled finite element model that accounts for the temperature-dependent electrical conductivity changes has not been developed for ablation type devices. While it is widely acknowledged that accounting for temperature dependent phenomena may affect the outcome of these models, the effect has not been assessed. METHODS: The results of four finite element models are compared: constant electrical conductivity without tissue perfusion, temperature-dependent conductivity without tissue perfusion, constant electrical conductivity with tissue perfusion, and temperature-dependent conductivity with tissue perfusion. RESULTS: The data demonstrate that significant errors are generated when constant electrical conductivity is assumed in coupled electrical-heat transfer problems that operate at high temperatures. These errors appear to be closely related to the temperature at which the ablation device operates and not to the amount of power applied by the device or the state of tissue perfusion. CONCLUSION: Accounting for temperature-dependent phenomena may be critically important in the safe operation of radiofrequency ablation device that operate near 100°C

    Safety Implications of High-Field MRI: Actuation of Endogenous Magnetic Iron Oxides in the Human Body

    Get PDF
    Background: Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body.Methodology: Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles.Principal Finding and Conclusions: Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation

    Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating.</p> <p>Methods</p> <p>A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip.</p> <p>Results</p> <p>A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C.</p> <p>Conclusion</p> <p>Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.</p

    Valuation effects of corporate strategic transactions in the cleantech industry

    No full text

    Inside RISKS: risks in medical electronics

    No full text
    • …
    corecore