704 research outputs found

    Existence of Monetary Steady States in a Matching Model: Indivisible Money

    Get PDF
    Existence of a monetary steady state is established for a random matching model with divisible goods, indivisible money, and take-it-or-leave-it offers by consumers. There is no restriction on individual money holdings. The background environment is that in papers by Shi and by Trejos and Wright. The monetary steady state shown to exist has nice properties: the value function, defined on money holdings, is increasing and strictly concave, and the measure over money holdings has full support.

    Propositional Encoding of Constraints over Tree-Shaped Data

    Full text link
    We present a functional programming language for specifying constraints over tree-shaped data. The language allows for Haskell-like algebraic data types and pattern matching. Our constraint compiler CO4 translates these programs into satisfiability problems in propositional logic. We present an application from the area of automated analysis of (non-)termination of rewrite systems

    Fusions of Description Logics and Abstract Description Systems

    Full text link
    Fusions are a simple way of combining logics. For normal modal logics, fusions have been investigated in detail. In particular, it is known that, under certain conditions, decidability transfers from the component logics to their fusion. Though description logics are closely related to modal logics, they are not necessarily normal. In addition, ABox reasoning in description logics is not covered by the results from modal logics. In this paper, we extend the decidability transfer results from normal modal logics to a large class of description logics. To cover different description logics in a uniform way, we introduce abstract description systems, which can be seen as a common generalization of description and modal logics, and show the transfer results in this general setting

    Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

    Full text link
    A prominent approach to implementing ontology-mediated queries (OMQs) is to rewrite into a first-order query, which is then executed using a conventional SQL database system. We consider the case where the ontology is formulated in the description logic EL and the actual query is a conjunctive query and show that rewritings of such OMQs can be efficiently computed in practice, in a sound and complete way. Our approach combines a reduction with a decomposed backwards chaining algorithm for OMQs that are based on the simpler atomic queries, also illuminating the relationship between first-order rewritings of OMQs based on conjunctive and on atomic queries. Experiments with real-world ontologies show promising results

    Stream Productivity by Outermost Termination

    Full text link
    Streams are infinite sequences over a given data type. A stream specification is a set of equations intended to define a stream. A core property is productivity: unfolding the equations produces the intended stream in the limit. In this paper we show that productivity is equivalent to termination with respect to the balanced outermost strategy of a TRS obtained by adding an additional rule. For specifications not involving branching symbols balancedness is obtained for free, by which tools for proving outermost termination can be used to prove productivity fully automatically

    Effect of the Output of the System in Signal Detection

    Get PDF
    We analyze the consequences that the choice of the output of the system has in the efficiency of signal detection. It is shown that the signal and the signal-to-noise ratio (SNR), used to characterize the phenomenon of stochastic resonance, strongly depend on the form of the output. In particular, the SNR may be enhanced for an adequate output.Comment: 4 pages, RevTex, 6 PostScript figure

    Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems

    Get PDF
    The tree automaton completion is an algorithm used for proving safety properties of systems that can be modeled by a term rewriting system. This representation and verification technique works well for proving properties of infinite systems like cryptographic protocols or more recently on Java Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the lack of information about rewriting relation between terms. Actually, terms in relation by rewriting are in the same equivalence class: there are recognized by the same state in the tree automaton. Our objective is to produce an automaton embedding an abstraction of the rewriting relation sufficient to prove temporal properties of the term rewriting system. We propose to extend the algorithm to produce an automaton having more equivalence classes to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transitions are used to recognize equivalence classes of terms, epsilon-transitions represent the rewriting relation between terms. From the completed automaton, it is possible to automatically build a Kripke structure abstracting the rewriting sequence. States of the Kripke structure are states of the tree automaton and the transition relation is given by the set of epsilon-transitions. States of the Kripke structure are labelled by the set of terms recognized using ground transitions. On this Kripke structure, we define the Regular Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be checked using standard model checking algorithms. The only difference between LTL and R-LTL is that predicates are replaced by regular sets of acceptable terms

    Algorithm for Adapting Cases Represented in a Tractable Description Logic

    Full text link
    Case-based reasoning (CBR) based on description logics (DLs) has gained a lot of attention lately. Adaptation is a basic task in the CBR inference that can be modeled as the knowledge base revision problem and solved in propositional logic. However, in DLs, it is still a challenge problem since existing revision operators only work well for strictly restricted DLs of the \emph{DL-Lite} family, and it is difficult to design a revision algorithm which is syntax-independent and fine-grained. In this paper, we present a new method for adaptation based on the DL EL\mathcal{EL_{\bot}}. Following the idea of adaptation as revision, we firstly extend the logical basis for describing cases from propositional logic to the DL EL\mathcal{EL_{\bot}}, and present a formalism for adaptation based on EL\mathcal{EL_{\bot}}. Then we present an adaptation algorithm for this formalism and demonstrate that our algorithm is syntax-independent and fine-grained. Our work provides a logical basis for adaptation in CBR systems where cases and domain knowledge are described by the tractable DL EL\mathcal{EL_{\bot}}.Comment: 21 pages. ICCBR 201
    corecore