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Abstract

Existence of a monetary steady state is established for a random
matching model with divisible goods, indivisible money, and take-it-
or-leave-it o¤ers by consumers. There is no restriction on individual
money holdings. The background environment is that in papers by Shi
and by Trejos and Wright. The monetary steady state shown to exist
has nice properties: the value function, de…ned on money holdings, is
increasing and strictly concave, and the measure over money holdings
has full support.
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1 Introduction

Shi (1995) and Trejos and Wright (1995) introduce a matching model of
money with divisible goods. While the model builds on the indivisible goods
model of Kiyotaki and Wright (1989), the introduction of divisible goods per-
mits output and prices to be determined as part of an equilibrium. Trejos and
Wright show that equilibrium under a bargaining rule is easily formulated
for general individual money holdings. However, existence of a monetary
equilibrium has been established only for special versions. Here, I give a
general existence proof for indivisible money. In particular, under the bar-
gaining rule that potential consumers make take-it-or-leave-it o¤ers, I prove
that there exists a steady state with a value function de…ned on money hold-
ings that is increasing and strictly concave and with a measure over money
holdings that has full support. The only assumptions are lower bounds on (a)
the marginal utility of consumption at zero and (b) the ratio of the average
stock of money to the size of the smallest unit of money.
Proving existence is di¢cult because the general model has endogenous

heterogeneity of money holdings. Most researchers simplify or avoid the en-
dogeneity of the distribution of money holdings by making special assump-
tions.1 One exception is Molico (1997). He studies the model numerically
and claims to …nd monetary steady states for divisible money and unbounded
individual holdings. My results—and those in a companion paper on divis-
ible money—provide a basis for interpreting his numerical results. Another
exception is Taber and Wallace (1999), who study indivisible commodity
money, money with a direct utility payo¤, with a general …nite bound on in-
dividual holdings. They establish existence of a steady state with a concave
and strictly increasing value function. I extend their result in two respects. I
allow individual money holdings to be unbounded and I consider …at money.
To deal with …at money, I show that there exists a steady state for the corre-
sponding commodity money version in which the value of money is bounded

1Green and Zhou (1998) and Zhou (1999) assume indivisible goods and divisible money.
Green and Zhou (in print) assume divisible goods and divisible money, but make preference
assumptions that e¤ectively make goods indivisible. Camera and Corbae (1999) consider
the same model as I study with a …nite bound on individual money holdings. For a special
region of the parameter space, they construct a steady state in which one unit of money
is o¤ered in every trade. Cavalcanti (2000) assumes a unit bound of money holdings and
a large number of kinds of money. Shi (1997) and Lagos and Wright (2000) make special
assumptions that produce a degenerate distribution of money holdings.
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away from zero as the direct utility payo¤ approaches zero.2

The properties of the steady state shown to exist—monotonicity and strict
concavity of the value function and full support of the measure—are impor-
tant. One implication is a non-neutrality result. Two economies that have
di¤erent ratios of average holdings of money to the smallest unit of money
have di¤erent sets of steady states in terms of allocations. In fact, if the
larger ratio is an integer multiple of the smaller ratio, then the set of steady
states for the economy with more money is a strict superset of that for the
economy with less money. As shown below, this is an immediate implication
of the full-support property.

2 The Model

As noted above, the model is essentially that in Shi (1995) and Trejos and
Wright (1995).

2.1 Environment

Time is discrete, dated as t ¸ 0. There is a [0; 1] continuum of each of
N ¸ 3 types of in…nitely lived agents, and there are N distinct produced
and perishable types of divisible goods at each date. A type n agent, n 2
f1; 2; :::; Ng, produces only type n good and consumes only type n+ 1 good
(moduloN). Each agent maximizes expected discounted utility with discount
factor ¯ 2 (0; 1). For a type n agent, utility in a period is u(qn+1)¡qn, where
qn+1 2 R+ is consumption of type n + 1 good and qn 2 R+ is production
of type n good. The utility function u : R+ ! R+ is increasing, strictly
concave, continuously di¤erentiable, and satis…es u(0) = 0 and u0(1) < 1.
In addition, there is a lower bound on u0(0) which is speci…ed later.
There exists a …xed stock of money which is perfectly durable. Money is

symmetrically distributed among the N specialization types. Let the average
money holding be denoted by m and let the (smallest) unit of money be
denoted by ¢(> 0). I assume that ¢ is small relative to m with a lower
bound on m=¢ that is speci…ed later. Also, let the exogenous upper bound
of individual money holdings be denoted by B. Although the focus of the
paper is unbounded individual holdings (B =1), I also include the bounded

2The approach used here is likey to be applicable to models in which the source of
heterogeneity in money holdings is preference shocks rather than random meetings.
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case (B …nite). If B is …nite, then it is assumed to be large relative tom with
a lower bound on B=m that is speci…ed later. (B > m is necessary for trade
to occur.) Also, if B is …nite, then B=¢ is assumed to be an integer. Let
B¢ = f0;¢; :::; Bg denote the set of possible individual holdings of money.
In each period, agents are randomly matched in pairs. A meeting between

a type n agent and a type n+1 agent is called a single-coincidence meeting.
Other meetings are not relevant. In meetings, the agents’ types and money
holdings are observable, but any other information about an agent’s trading
history is private.

2.2 De…nition of Equilibrium

In single-coincidence meetings, the potential consumer makes a take-it-or-
leave-it o¤er, (p; q), where p is the amount of money o¤ered and q is the
amount of production demanded. Let wt(x) be the expected discounted
value of holding x amount of money at the start of period t, prior to date t
matching, where wt : B¢ ! R+ is nondecreasing. Consider a date t single-
coincidence meeting between a consumer with x amount of money and a
producer with m amount of money. Let

¡(x;m) = fp 2 B¢ : p · minfx;B ¡mgg; (1)

the set of feasible o¤ers of money. (As a convention,1¡m =1.) Assuming,
as is standard, that the producer accepts all o¤ers which leave him no worse
o¤, an optimal o¤er satis…es p 2 ¡(x;m) and q = ¯wt+1(m+ p)¡ ¯wt+1(m),
where the equality for q says that the lower bound on the producer’s gain-
from-trade, zero, is attained. Therefore, the consumer’s problem reduces to
maxp2¡(x;m)fu[¯wt+1(m + p) ¡ ¯wt+1(m)] + ¯wt+1(x ¡ p)g. To express this
objective function more succinctly, it is convenient to introduce a symbol
for an increment in a function: for any function g : R! R, let g(x; y) ´
g(x) ¡ g(x ¡ y). Using this shorthand and dropping the time subscript on
the value function, for a nondecreasing w : B¢ ! R+ and (x;m) 2 B2¢, let

f(x;m;w) = max
p2¡(x;m)

fu[¯w(m+ p; p)] + ¯w(x¡ p)g; (2)

and
p(x;m;w) = argmax

p2¡(x;m)
fu[¯w(m+ p; p)] + ¯w(x¡ p)g: (3)
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That is, when w is the value of money at the start of the next period, f is
the payo¤ for a consumer with x (pre-trade) who meets a producer with m
(pre-trade) while p is the set of optimal o¤ers of money.
Because p(x;m;w) is discrete, and, may, therefore, be multi-valued, it

is important for existence to allow all possible randomizations over the ele-
ments of p(x;m;w). In order to describe the law of motion for the distri-
bution of money holdings, it is convenient to express randomizations over
the post-trade money holdings of consumers. Therefore, I de…ne the set of
randomizations, a set of measures on B¢, as

¤(y;m;w) = f¸(:; y;m;w) : ¸(x; y;m;w) = 0 if x =2 y ¡ p(y;m;w)g, (4)

where ¸(x; y;m;w) is the fraction of consumers with y (pre-trade) in meetings
with producers with m (pre-trade) who end up with x.
Let ¼t(x) denote the fraction of agents holding x amount of money at the

start of period t, so that ¼t is a measure on B¢. The law of motion for ¼t+1
can be expressed as

¼t+1(x) =
N ¡ 2
N

¼t(x) +
1

N

P
y;m ¼t(y)¼t(m)[¸(x; y;m;wt+1) (5)

+¸(m+ y ¡ x;m; y;wt+1)]
for some

¸(:; y;m;wt+1) 2 ¤(y;m;wt+1): (6)

Note that ¸(m + y ¡ x;m; y; wt+1) is the fraction of producers with y (pre-
trade) in meetings with consumers with m (pre-trade) who end up with x.
The value function, wt(x), satis…es

wt(x) =
N ¡ 1
N

¯wt+1 (x) +
1

N

P
m ¼t(m)f(x;m;wt+1): (7)

This follows from the fact that the payo¤ to being a producer with x is
¯wt+1 (x).
I can now state the relevant de…nitions.

De…nition 1 Given ¼0, a sequence fwt; ¼t+1g1t=0 is an equilibrium if it sat-
is…es (1)¡ (7). A monetary equilibrium is an equilibrium with positive con-
sumption and production. A pair (w; ¼) is a steady state if fwt; ¼t+1g1t=0 with
wt = w and ¼t+1 = ¼ for all t is an equilibrium for ¼0 = ¼.

5



3 Existence of a Monetary Steady State

To establish the existence of a monetary steady state, the following assump-
tions are maintained from now on.

(A1)u0(0) > [2=(R¯)]2, where R ´ [N ¡ (N ¡ 1)¯]¡1.3
(A2)B ¸ 4m.
(A3)¢ · mD=(¯W ), whereD is the unique solution of u0(D) = [2=(R¯)]2

and W is the unique positive solution of N(1¡ ¯)W = u(¯W ) +N .4

In this model, existence always requires a lower bound on u0(0) because
a producer has to see a future reward from producing. Assumptions (A2)
and (A3) say that the set of individual holdings is large enough (relative to
the average holding). In what follows, except to the discussion of neutrality
and non-neutrality at the end of the paper, it is convenient to normalize the
exogenous nominal variables m, ¢, and B by letting m = 1.
I start by de…ning the main correspondences used. These are essentially

implied by (1)¡(7). LetW be the set of concave and nondecreasing functions
from B¢ to [0;W ]. Let ¦ be the subset of measures on B¢ satisfying the
unit mean condition. Let bothW and ¦ be equipped with the topology of
pointwise convergence.
Let the single-valued map ©w onW £¦ be de…ned by

©w(w; ¼)(x) =
N ¡ 1
N

¯w(x) +
1

N

P
m ¼(m)f(x;m;w): (8)

Let the correspondence ©¼ onW £¦ be de…ned by

©¼(w; ¼) = fº : º(x) = N ¡ 2
N

¼(x) +
1

N

P
y;m ¼(y)¼(m)[¸(x; y;m;w) (9)

+¸(m+ y ¡ x;m; y; w)] for some ¸(:; y;m;w) 2 ¤(y;m;w)g:
Finally, let © = (©w;©¼).
In what follows, I deal directly with the unbounded case (B =1). The

…nite bound situation is a special case. The next lemma establishes important
properties ofW £¦ and ©.

3If (w; ¼) is a steady state, then (7) can be written as w(x) = R
P
m ¼(m)f(x;m;w).

This expression for w(x) is used repeatedly below. Also, note that R < 1.
4As will be shown in Lemma 3, W ¡ 1 can be taken to be an upper bound on steady

state value functions. Also, note that D=(¯W ) < 1 because ¯[2=(R¯)]2 > N(1¡ ¯).
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Lemma 1 (i)W£¦ is compact and metrizable. (ii)©(w; ¼) ½W £¦ with
©w(w; ¼) bounded above by W ¡ 1. (iii)© is convex-valued. (iv)© is upper
hemicontinuous.

Proof. By the Tychono¤ Product Theorem (see Aliprantis and Border
(1994, page 53)), bothW and¦ are compact. By 3.30 Theorem of Aliprantis
and Border (1994, page 89), bothW and¦ are metrizable. By the de…nition
of ©¼ in (9), there is no disposal of money. Hence ©¼(w; ¼) ½ ¦. Taber and
Wallace (1999) show that ©w(w; ¼) preserves concavity and monotonicity.
As regards the bound,

N©w(w; ¼)(x) · (N ¡ 1)¯w(x) + u[¯w(x)] + ¯w(x)
· N¯W + u(¯W ) = NW ¡N;

where the …rst inequality follows from (8) and the equality from the de…nition
of W . Because ¤(y;m;w) is convex, it follows that ©¼ is convex-valued.
Now we consider part (iv). We begin with three claims.
Claim 1 : f(:; :; :) is continuous on B2¢ £W and p(:; :; :) is upper hemi-

continuous on B2¢ £W. Let A = f(x;m;w; p) : (x;m;w) 2 B2¢ £W and
p 2 ¡(x;m)g. Let g : A ! R+ be de…ned by g(x;m;w; p) = u[¯w(m +
p; p)] + ¯w(x ¡ p). Because the value of g(x;m;w; p) only depends on
x;m;w(0); w(¢); :::; w(x + m); and p, it follows that g is continuous on A.
Then claim 1 follows from Berge’s Maximum Theorem (see Aliprantis and
Border (1994, page 473)).
Claim 2 : Let wn; w 2 W with wn ! w. For all x, f(x;m;wn) !

f(x;m;w) uniformly in m. Fix x and …x " > 0. Let m¤ be such that
u(¯xW=m¤) < " and let n be such that ¯ jwn(y)¡ w(y)j < " for all y · x.
By Claim 1, for su¢ciently large n, jf(x;m;w)¡ f(x;m;wn)j < " for all
m · m¤. So we only need to consider m > m¤. Let m > m¤. Because w is
concave and bounded above by W and w(0) ¸ 0, it follows that W=m¤ >
w(m + x; x)=x or w(m + x; x) < xW=m¤. Let p 2 p(x;m;w). Because
g(x;m;wn; p) · f(x;m;wn) (for g, see Claim 1), it follows that

f(x;m;w)¡ f(x;m;wn)
· u[¯w(m+ p; p)]¡ u[¯wn(m+ p; p)] + ¯[w(x¡ p)¡ wn(x¡ p)]
< u[¯w(m+ p; p)] + " · u[¯w(m+ x; x)] + " < u(¯xW=m¤) + " < 2":

By reversing the roles of f(x;m;w) and f(x;m;wn), we have f(x;m;wn)
¡f(x;m;w) < 2". This establishes Claim 2.
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Claim 3 : Let the correspondence J on W£¦ be de…ned as

J(w; ¼) = f¹ : ¹(x) =Py;m ¼(y)¼(m)[¸(x; y;m;w)

+¸(m+ y ¡ x;m; y; w)] for some ¸(:; y;m;w) 2 ¤(y;m;w)g:
Let (wn; ¼n); (w; ¼) 2 W£¦ with (wn; ¼n) ! (w; ¼). There exists a sub-
sequence of n, denoted by j, such that there exist ¹j 2 J(wj ; ¼j) and ¹ 2
J(w; ¼) with ¹j ! ¹. Fix " > 0. Let x¤ > 1=" and let n be such that
j¼n(x)¡ ¼(x)j < " for all x · x¤. By Claim 1, p(y;m; :) is upper hemi-
continuous on W for all (y;m). Hence there exists a subsequence of n,
denoted by j, such that for large j, an element of p(y;m;wj) coincides with
an element of p 2 p(y;m;w) for all y;m · x¤. It follows that there exist
¸(:; y;m;wj) 2 ¤(y;m;wj) and ¸(:; y;m;w) 2 ¤(y;m;w) such that for large
j, ¸(:; y;m;wj) = ¸(:; y;m;w) for all y;m · x¤. Let ¸(x; y;m;wj)+¸(m+y¡
x;m; y; wj) be denoted by cx;jy;m and let ¸(x; y;m;w) + ¸(m + y ¡ x;m; y;w)
be denoted by cxy;m. Now let ¹j(x) =

P
y;m ¼j(y)¼j(m)c

x;j
y;m and ¹(x) =P

y;m ¼(y)¼(m)c
x
y;m. Because x

¤ > 1=" and the average holding is unity, it
follows that both ¹j(x) and ¹(x) are bounded above by " for all x > x

¤. So
we only need to consider x · x¤. For x · x¤, we have
¹j(x)¡ ¹(x) =

P
y;m·x¤[¼j(y)¼j(m)¡ ¼(y)¼(m)]cxy;m

+
P

either y>x¤ or m>x¤[¼j(y)¼j(m)c
x;j
y;m ¡ ¼(y)¼(m)cxy;m]

< 2
P

y;m·x¤f[¼(y) + "][¼(m) + "]¡ ¼(y)¼(m)g
+2
P

y>x¤ ¼j(y)¼j(m) + 2
P

m>x¤ ¼j(y)¼j(m)

< 8"+ 2"2;

where the last inequality follows from ¼j(m) < " for allm > x¤. By reversing
the roles of ¹j(x) and ¹(x), we have ¹(x)¡¹j(x) < 8"+2"2. This establishes
Claim 3.
By 12.6 Corollary of Aliprantis and Border (1994, page 417), Claim 2

implies that for all x, (w; ¼) 7!P
m ¼(m)f(x;m;w) is continuous. It follows

that ©w is continuous. By Claim 3, J is upper hemicontinuous. It follows
that ©¼ is upper hemicontinuous.

Next, I introduce a perturbation of the mapping ©, which can be inter-
preted as assigning some direct utility to money. Let the real function h on
B¢ be de…ned by

h(x) = x=4 if x · 4; h(x) = 1 if x > 4:
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Let K be the set of concave and nondecreasing functions from B¢ to [0;W ¡
1]. (Note that K ½W.) For a positive integer n, let the correspondence
©n = (©w;n;©¼;n) on K£¦ be de…ned by

©n = ©(w + h=n; ¼): (10)

Lemma 2 ©n has a …xed point.

Proof. Because w 2 K implies w + h=n 2 W and because (w; ¼) 7!
(w + h=n; ¼) is continuous, by Lemma 1 (iii) and (iv), ©n is convex-valued
and upper hemicontinuous. By Lemma 1 (ii), ©n(w; ¼) ½ K £¦. Because
K ½W is closed, it follows that K is compact, and, hence, that K £¦ is
compact. Then by Kakutani’s …xed point theorem, ©n has a …xed point.

The next lemma, the main ingredient in the existence proof, establishes
a uniform (with respect to n in (10)) lower bound on the value functions of
the …xed points of ©n.

Lemma 3 If (w; ¼) is a …xed point of ©n, then w(4) ¸ D=¯ ¡ 1=n.

Proof. Assume by contradiction that w(4) < D=¯¡1=n. Let w+h=n be
denoted by '. The proof is split into two steps. In the …rst step, we calculate
a lower bound on f(4;m; ')¡ f(4¡¢;m;') for m · 2. In the second step,
we draw contradictions based on this bound. In this and subsequent proofs,
we suppress the dependence of f and p on ' or w. Also, for a measure ¹ on
B¢ and an interval I, we denote ¹(I \ B¢) by ¹I.
Step 1. To get the lower bound, consider two possibilities for p(4¡¢;m)

for each m · 2, according to whether an element of p(4¡¢;m) does or does
not exceed 2. First, assume p(4¡¢;m) 3 p ¸ 2. Because the consumer with
money holding 4 can make the same o¤er as the consumer with 4¡¢ does,
and, hence, get the same amount of the consumption good, it follows that

f(4;m)¡ f(4¡¢;m) ¸ ¯'(4¡ p;¢) ¸ ¯'(2;¢) > ¯w(2;¢);

where the second inequality follows from concavity of '. Next, assume p(4¡
¢;m) 3 p < 2. Because m · 2, we have p+¢+m · 4. Hence the consumer
with 4 can make the o¤er p + ¢ to the producer with m and end up with
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the same money holding as the consumer with 4¡¢. It follows that
f(4;m)¡ f(4¡¢;m)

¸ u[¯'(m+ p+¢; p+¢)]¡ u[¯'(m+ p; p)]
> u0[¯'(m+ p+¢; p+¢)]¯'(m+ p+¢;¢)
> u0(D)¯'(m+ p+¢;¢) ¸ u0(D)¯'(4;¢) > u0(D)¯w(4;¢); (11)

where the second inequality follows from the mean value theorem and strict
concavity of u, the third from ¯'(m+p+¢; p+¢) < ¯'(4) = ¯[w(4)+1=n] <
D and strict concavity of u, and the fourth from concavity of '. Let l =
minf¯w(2;¢), u0(D)¯w(4;¢)g. Then for m · 2, f(4;m)¡ f(4¡¢;m) > l.
Step 2. Because (w; ¼) is a …xed point of ©n, by (10) and (8), we have

w(x;¢) = R(N ¡ 1)¯h(x;¢)=n+RPm ¼(m)[f(x;m)¡ f(x¡¢;m)]:
Because f(x;m) ¸ f(x¡¢;m) for all m, it follows that for m¤ <1,

w(x;¢) ¸ RPm¤
m=0 ¼(m)[f(x;m)¡ f(x¡¢;m)]: (12)

Because the average holding is 1, ¼[0; 2] ¸ 1=2. Then by (12) and Step 1,
w(4;¢) > Rl=2: (13)

Now consider the two possible values of l. If l = u0(D)¯w(4;¢), then by
(13),

w(4;¢) > Rl=2 = (R¯=2)u0(D)w(4;¢) = [2=(R¯)]w(4;¢) > w(4;¢);

a contradiction. So it must be that l = ¯w(2;¢). Then by (13),

w(4;¢) > Rl=2 = (R¯=2)w(2;¢): (14)

To rule this out, we calculate a lower bound on f(2;m) ¡ f(2 ¡ ¢;m) for
m · 2. Let p 2 p(2 ¡ ¢;m). Because p · 2 ¡ ¢ and m · 2, we have
p+¢+m · 4. Hence the consumer with 2 can o¤er p+¢ to the producer
with m. It follows that

f(2;m)¡ f(2¡¢;m)
¸ u[¯'(m+ p+¢; p+¢)]¡ u[¯'(m+ p; p)]
> u0(D)¯w(4;¢) > u0(D)¯(R¯=2)w(2;¢);

10



where the second inequality follows exactly the logic used in (11) and the last
from (14). Let l0 = u0(D)¯(R¯=2)w(2;¢). Then by (12) and ¼[0; 2] ¸ 1=2,
we have

w(2;¢) > Rl0=2 = (R¯=2)2u0(D)w(2;¢) = w(2;¢);

a contradiction.5

In some respects, the ingredients in the proof of Lemma 3 have analogues
in the simple case with B = ¢ = 1. In my proof, I require that there be
a set of “poor” agents with positive measure. This set plays the role of the
agents with 0 when B = ¢ = 1. In the proof, the “poor” set is [0; 2] \
B¢ because there is an obvious lower bound on the measure of this set —
namely, 1=2. However, other sets would also work. The agents with 4 are
like those with holdings of 1 when B = ¢ = 1. Of course, when B = ¢ = 1,
the monetary steady state can be computed directly because the distribution
of money holdings and the o¤ers in trades are …xed. The argument here is
complicated because very little is known either about the distribution or the
o¤ers that agents make.
Now I show that there is a monetary steady state by taking a limit as the

direct utility payo¤ of money approaches zero.

Lemma 4 Let f(wn; ¼n)g be a sequence such that (wn; ¼n) is a …xed point of
©n. (i)f(wn; ¼n)g has at least one limit (accumulation) point, denoted (w; ¼).
(ii)(w; ¼) is a …xed point of ©. (iii)w(0) = 0 and w(4) ¸ D=¯.

Proof. BecauseW£¦ is compact, there is a subsequence of f(wn; ¼n)g
that converges to some (w; ¼) 2 W £ ¦. To simplify the notation, let
f(wn; ¼n)g represent the subsequence whose limit is (w; ¼). Because (wn; ¼n)
is a …xed point of ©, it follows from (10) that (wn; ¼n) 2 ©(wn + h=n; ¼n).
Because (wn; ¼n)! (w; ¼), it follows that (wn+h=n; ¼n)! (w; ¼). Because
© is upper hemicontinuous, (wn + h=n; ¼n) ! (w; ¼) and (wn; ¼n) 2 ©(wn +
h=n; ¼n) imply that there is a subsequence of f(wn; ¼n)g converging to an
element of ©(w; ¼). Because f(wn; ¼n)g itself converges to (w; ¼), it follows
that (w; ¼) 2 ©(w; ¼). Part (iii) is obvious.

5In this proof, ¢ is simply required to be no greater than unity, the average holding.
If the average holding m is not unity, then we require ¢ · m and we rede…ne h as
h(x) = x=(4m) for x · 4m and h(x) = 1 for x > 4m. It follows that wn(4m) is bounded
below by D=¯ ¡ 1=n.
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Any Lemma 4 limit point (w; ¼) is a monetary steady state according to
De…nition 1. The next lemma establishes some of the properties of (w; ¼).

Lemma 5 Let (w; ¼) be a Lemma 4 limit point. (i)w is concave and strictly
increasing. (ii)¼(0) > 0.

Proof. (i)Concavity is obvious. Assume by contradiction that w is not
strictly increasing. By concavity of w, there exists a > 0 such that w(x) =
w(a) if x ¸ a and w(x) < w(a) if x < a. (That is, by concavity, the ‡at
portion of w must occur over a set of the form fa; a + ¢; :::g.) It follows
that w(a) > 0, and, hence, that there must be a positive probability that the
consumer with a makes an o¤er p ¸ ¢ to some producers. The consumer
with a+¢ has the same probability of meeting those producers and can also
make the o¤er p. If so, he ends up with a+¢¡ p and the consumer with a
ends up with a ¡ p. But then a ¡ p < a implies w(a + ¢ ¡ p) > w(a ¡ p).
This, in turn, implies w(a+¢) > w(a), a contradiction.
(ii)Assume by contradiction that ¼(0) = 0 and let a = minfx : ¼(x) > 0g.

It follows that w(a) > 0, and, hence, that there must be a positive probability
that the consumer with a makes an o¤er p ¸ ¢ to some producers. That
is, for some m with ¼(m) > 0, p 2 p(a;m) with p ¸ ¢ occurs with positive
possibility. But then ¼(a)¼(m) > 0 implies ¼(x¡ p) > 0, a contradiction.

Now I turn to establishing that the steady state measure has full support.
In what follows, let (w; ¼) be a Lemma 4 limit point and let supp ¼ denote
the support of ¼. The full support result relies on some facts about the
optimal o¤ers of money, p(x;m;w), and their dependence on x and m.

Lemma 6 (i)If p1 2 p(x;m;w) and p2 2 p(x + ¢;m; w), then p2 ¡ p1 2
f0;¢g: (The consumer’s marginal propensity to spend on a given producer is
between 0 and 1.)
(ii)If x1 < x2, then x1 + max p(m;x1; w) · x2 +min p(m;x2; w). (For a

given consumer, the producer’s post-trade money holding is weakly increasing
in his pre-trade holding.)
(iii)If x2 ¸ x1 and m2 < m1, then max p(x2;m2; w) · maxfx2¡x1;m1¡

m2g+min p(x1;m1; w). (If the consumer is richer and the producer is poorer,
then the change in spending is bounded above by the maximum of di¤erences
in the consumer’s and the producer’s holdings.)
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(iv)Assume min p(x1;m1; w) = 0 and m2 ¸ m1. If x2 > x1, then
max p(x2;m2; w) · x2 ¡ x1. If x2 = x1, then min p(x2;m2; w) = 0. (If a
consumer and a producer do not trade, then a richer consumer who meets a
richer producer o¤ers at most the consumer’s increment.)
(v)If x > m, then 0 =2 p(x;m;w). (If the consumer is richer than the

producer, then there is trade.)

Proof. See the Appendix.

The next lemma shows that there is no endogenous bound.

Lemma 7 There is no x 2 B¢ such that ¼(m) = 0 for m > x.

Proof. Assume by contradiction that 9 x = max fm : ¼(m) > 0g < B.
Because w is concave and bounded above by W and w(0) = 0, it follows
that w(x+¢;¢) < ¢W=x. Because the average holding is 1 and ¼(0) > 0,
it follows that x > 1. Then by assumption (A3), we have w(x + ¢;¢) <
¢W · D=¯. By the de…nition of x , 0 2 p(x; x). It follows that

¯w(x;¢) ¸ u[¯w(x+¢;¢)] > u0(D)¯w(x+¢;¢): (15)

Also, because 0 2 p(x; x) and ¢ 2 ¡(x+¢; x), it follows that
f(x+¢; x)¡ f(x; x) ¸ u[¯w(x+¢;¢)] > u0(D)¯w(x+¢;¢); (16)

where the last inequality follows from comparing the second and last terms
in (15). Now, either ¼[0; x) ¸ 1=2 or ¼(x) ¸ 1=2. If the latter, then

w(x+¢;¢) = R
P

m ¼(m)[f(x+¢;m)¡ f(x;m)] (17)

> R¼(x)u0(D)¯w(x+¢;¢) > w(x+¢;¢);

a contradiction. (Here, the …rst inequality follows from (16) and f(x +
¢;m) > f(x;m) for allm. For the equality, see footnote 3.) So ¼[0; x) ¸ 1=2.
Fix m < x. By Lemma 6 (v), min p(x;m) > 0. Because p(x;m) ½
¡(x + ¢;m), it follows that f(x + ¢;m) ¡ f(x;m) ¸ ¯w(x;¢). Then
by the logic used in (17), we have w(x + ¢;¢) > R¼[0; x)¯w(x;¢) >
(R=2)u0(D)¯w(x+¢;¢) > w(x+¢;¢), a contradiction. (Here, the second
inequality follows from (15).)

The next lemma shows that supp ¼ is periodic.
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Lemma 8 supp ¼ = f0; b¢; 2b¢; :::g, where b is an integer.

Proof. Let a = minfx > 0 : ¼(x) > 0g. The following proof is written
as if a > ¢. It also applies if a = ¢, which is a simple special case. In this
proof, we let i; j 2 Z+. Let n = maxfi : min p(a; ia) ¸ ¢g.
Claim 1 : n ¸ 1. Assume by contradiction that n = 0. By Lemma 6 (iv),

this implies 0 2 p(a;m) for m > a. Hence, letting ½ = ¼(0), we have

w(a) = R½u[¯w(a)] +R(1¡ ½)¯w(a): (18)

We also have w(2a) ¸ R½fu[¯w(a)]+¯w(a)g+R(1¡ ½)¯w(2a). Comparing
this with (18), we have

w(2a; a) ¸ R½¯w(a) +R(1¡ ½)¯w(2a; a): (19)

Now let c = [1¡R(1¡ ½)¯]=(R½). (Note that c > 1.) By (18) and (19), we
have cw(a) = u[¯w(a)] and cw(2a; a) ¸ ¯w(a). Let g satisfy cg = ¯w(a).
(Note that w(2a; a) ¸ g.) By g < w(a) and cw(a) = u[¯w(a)], we have
cg < u(¯g). Then u[¯w(2a; a)] ¸ u(¯g) > cg = ¯w(a). But n = 0 implies
¯w(a) ¸ u[¯w(2a; a)], a contradiction.
Claim 2 : a 2 p(a; ja) for j = 1; :::; n and ¼(ja) > 0 for j = 1; :::; n+ 1.

We proceed by induction: for j = 1; :::; n, ¼(ja) > 0 implies a 2 p(a; ja) and
¼(ja+a) > 0. By the de…nition of a, we only need to establish the induction
step. By Lemma 6 (iv) and the de…nition of n, min p(a; ja) ¸ ¢. If p 2
p(a; ja) with p 2 (0; a) occurs with positive probability, then ¼(a)¼(ja) > 0
implies ¼(a ¡ p) > 0, which contradicts the de…nition of a. It follows that
a 2 p(a; ja) occurs with probability 1, and, hence, that ¼(ja+ a) > 0.
Claim 3 : ¼(x) = 0 for x 6= ia if x · na+a. Suppose otherwise. We …rst

establish the following induction argument: for j = 2; :::; n, x 2 (ja¡ a; ja)
with ¼(x) > 0 implies ¼(x + a) > 0. To see this, assume that x and j
satisfy the conditions. By Claim 2, a 2 p(a; ja ¡ a). By Lemma 6 (ii), this
implies 0 =2 p(a; x). It follows that a 2 p(a; x) occurs with probability 1,
and, hence, that ¼(x + a) > 0. By the contradicting assumption and the
induction argument, 9 x 2 (na; na+ a) with ¼(x) > 0. Because a 2 p(a; na),
by Lemma 6 (ii), min p(a; x) ¸ na + a ¡ x. Because 0 2 p(a; na + a), by
Lemma 6 (ii), max p(a; x) · na+ a¡ x. Hence p(a; x) = fna+ a¡ xg. But
then ¼(x¡ na) > 0, a contradiction.
Claim 4 : ¼(x) = 0 for x 6= ia if x > na + a. We proceed by induction:

for j ¸ 1, ¼(x) = 0 for x 6= ia if x · na + ja implies ¼(x) = 0 for x 6= ia if
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x · na + ja + a. By Claim 3, the hypothesis holds for j = 1. So it su¢ces
to establish the induction step. Assume by contradiction that ¼(x) = 0 for
some x 2 (na + ja; na + ja + a). By Lemma 6 (v), min p(x; 0) > 0. By
Lemma 6 (iii), max p(x; 0) · na+ ja+min p(a; na+ ja) = na+ ja. Because
x is not a multiple of a, any feasible value of p(x; 0) makes ¼(y) > 0 for some
y · na+ ja where y 6= ia, a contradiction.
Claim 5 : ¼(na + ja) > 0 for j > 1. We proceed by induction: for

j ¸ 1, ¼(na + ja) > 0 implies ¼(na + ja + a) > 0. By Claim 2, the
hypothesis holds for j = 1. So it su¢ces to establish the induction step. Let
k = minfi : min p(ia; na + ja) ¸ ¢g. First assume k > n+ j. Now assume
by contradiction that ¼(na + ja + a) = 0 and let l = minfi : ¼(ia) > 0; i ¸
n + j + 2g. Note that p(la; na + ja ¡ a) only contains multiples of a. By
Lemma 6 (iii), max p(la; na+ ja¡a) · (l¡n¡ j)a+min p(na+ ja; na+ ja)
= (l¡n¡j)a, where the equality comes from the de…nition of k and k > n+j.
By Lemma 6 (v), min p(la; na+ ja¡ a) > 0. But then any feasible value of
p(la; na + ja ¡ a) makes ¼(ia) > 0 for some n + j < i < l, a contradiction.
So ¼(na+ ja+a) > 0. Next assume k · n+ j. Note that p(ka; na+ ja) only
contains positive multiples of a. By the de…nition of k, 0 2 p(ka¡a; na+ja).
By Lemma 6 (iv), this implies p(ka; na+ ja) = fag. Then by the induction
assumption, ¼(na+ ja+ a) > 0.6

Now I can prove that ¼ has full support. The proof is by contradiction.
If b (see Lemma 8) exceeds unity, then I can construct a mapping that is
concave and strictly increasing and has more than one positive …xed point.
However, this mapping can have at most one positive …xed point.7

Lemma 9 supp ¼ = B¢.

Proof. By Lemma 8, it su¢ces to prove that b = 1. So assume by
contradiction that b ¸ 2. In this proof, we let i 2 N and j 2 Z+.
First, we introduce some notation. Let ¼(jb¢) be denoted by ¼j and

w(jb¢) by wj. Also, let

ki = wi ¡ wi¡1 and hi = w(ib¢¡¢)¡ wi¡1:
6For …nite B, we …rst prove Claims 1, 2, and 3. It is clear that B must be at least

na+a. If B = na+a, then the proof is complete. Otherwise we continue to Claims 4 and
5. It is clear that B must be equal to na+ ja+ a for some j > 0 .

7The proof that the mapping has at most one positive …xed point resembles the proof
of Corollary 7.45 of Zeidler (1985, page 309).
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(Note that if b = 1, then hi = 0.) Let k = (k1; k2; :::) and h = (h1; h2; :::).
Let f(ib¢; jb¢) be denoted by fi;j. Now consider p(ib¢; jb¢). By Lemma 6
(i), if p1; p2 2 p(x;m), then jp2 ¡ p1j 2 f0;¢g. Because b ¸ 2, this implies
that there is at most one element of p(ib¢; jb¢) that is equal to nb¢ for
some n 2 Z+. By Lemma 8, any element of p(ib¢; jb¢) that occurs with
positive probability is equal to nb¢ for some n 2 Z+. Hence, there exists
a unique element of p(ib¢; jb¢) that is equal to nb¢ for some n 2 Z+ and
occurs with probability 1. Let this element be denoted by p(i; j)b¢. Finally,
let

Ai0 = fj : p(i; j) = p(i¡ 1; j)g and Ai1 = fj : p(i; j) = p(i¡ 1; j) + 1g:
By Lemma 6 (i), Ai0 [Ai1 = Z+. (Also note that Ai0 \Ai1 is empty.)
Next, for each pair of (i; j), we de…ne mappings Ái;j and ¾i;j according to

whether j 2 Ai0 or j 2 Ai1. If j 2 Ai0, then let the mapping Ái;j : R1+! R+
be de…ned by

Ái;j(x) = ¯(xi¡p(i;j) + wi¡p(i;j)¡1) + u[¯(wj+p(i;j) ¡ wj)]: (20)

Note that
Ái;j(k) = fi;j : (21)

By Lemma 6 (i), j 2 Ai0 implies p(i; j)b¢ 2 p(ib¢¡¢; jb¢). Hence,
Ái;j(h) = f(ib¢¡¢; jb¢): (22)

If j 2 Ai1, then let the mapping ¾i;j : R1+! R+ be de…ned by

¾i;j(x) = ¯wi¡p(i;j) + u[¯(xj+p(i;j) + wj+p(i;j)¡1 ¡ wj)]:
Note that

¾i;j(k) = fi;j: (23)

By Lemma 6 (i), j 2 Ai1 implies p(i; j)b¢¡¢ 2 p(ib¢¡¢; jb¢). Hence,
¾i;j(h) = f(ib¢¡¢; jb¢): (24)

Next, for each i, let the mapping µi : R1+! R+ be de…ned by

µi(x) =
N ¡ 1
N

¯(xi + wi¡1) +
1

N
[
P

j2Ai0 ¼jÁi;j(x) +
P

j2Ai1 ¼j¾i;j(x)]

¡wi¡1: (25)
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Let µ = (µ1; µ2; :::). By (21) and (23), we have

µi(k) = wi ¡ wi¡1 = ki; (26)

By (22) and (24), we have

µi(h) = w(ib¢¡¢)¡ wi¡1 = hi: (27)

(Hence the mapping µ has multiple positive …xed points.) By substituting
(26) and (27) into (25), we have

ki = R[
P

j2Ai0 ¼jÁi;j(k) +
P

j2Ai1 ¼j¾i;j(k)]¡ wi¡1; (28)

hi = R[
P

j2Ai0 ¼jÁi;j(h) +
P

j2Ai1 ¼j¾i;j(h)]¡ wi¡1: (29)

Next we make some claims.
Claim 1 : There exists s 2 (0; 1) such that h ¸ sk with hi = ski for some

i. By Cone Lemma 8.31 (i) of Zeidler (1985, page 292), there exists s > 0
such that h ¸ sk with hi = ski for some i. By monotonicity of w, s < 1.
Claim 2 : µi(h) ¸ µi(sk). Because h ¸ sk, this is obvious.
Claim 3 : Ái;j(sk) = sÁi;j(k) and ¾i;j(sk) > s¾i;j(k). The equality is

obvious. Now let c ¸ 0. Because s 2 (0; 1), by strict concavity of u, u(¯sk+
c) > su(¯k + c) + (1¡ s)u(c) ¸ su(¯k + c). Then the inequality follows.
Claim 4 : µi(sk) ¸ sµi(k), and, strictly if Ai1 is nonempty. This follows

from Claim 3.
Claim 5 : If hi = ski, then Ai1 is empty. Assume that Ai1 is nonempty.

But then hi = µi(h) ¸ µi(sk) > sµi(k) = ski, a contradiction. (Here, the
…rst equality follows from (27) and the second from (26). The …rst inequality
follows from Claim 2 and the second from Claim 4 and the contradicting
assumption.)
Claim 6 : h1 > sk1. Because (w; ¼) is a steady state, A11 is nonempty.

Then the result follows from Claim 5.
Now let n = minfi : hi = skig. By Claim 6, n > 1. By Claim 5, An1 is

empty. Let Q = R
P

j ¼jf¯wn¡p(n;j)¡1 + u[¯(wj+p(n;j) ¡ wj)]g. Then by (29)
and (28), we have

hn ¡ skn = R
P

j ¼j[Án;j(h)¡ sÁn;j(k)]¡ (1¡ s)wn¡1
= R

P
j ¼j¯(hn¡p(n;j) ¡ skn¡p(n;j)) + (1¡ s)(Q¡ wn¡1):

Because j 2 An0 for all j, we have
Q = R

P
j ¼jf¯wn¡p(n¡1;j)¡1 + u[¯(wj+p(n¡1;j) ¡ wj)]g = wn¡1:
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Hence, we have

hn ¡ skn = R
P

j ¼j¯(hn¡p(n;j) ¡ skn¡p(n;j)) ¸ R¼0¯(hn¡p(n;0) ¡ skn¡p(n;0));
where the inequality follows from h ¸ sk. By Lemma 6 (v), p(n; 0) > 0. By
0 2 An0, p(n; 0) < n. But then hi > ski for 1 · i < n implies hn > skn, a
contradiction.

Full support allows us to establish strict concavity of the value function.

Lemma 10 w is strictly concave.

Proof. See the Appendix.

Therefore, I have proved the following proposition.

Proposition 1 Under assumptions (A1)¡ (A3), which allow for unbounded
individual holdings of money, there exists a steady state (w; ¼) where w is
increasing and strictly concave and ¼ has full support.

One implication of this proposition is related to non-neutrality. To state
the result, I …rst de…ne a notion of equivalence between steady states.

De…nition 2 Let (w; ¼) and (w0; ¼0) be steady states. We say that (w0; ¼0)
is equivalent to (w; ¼) if there exists a bijection ° from supp ¼ to supp ¼0

such that if x 2 supp ¼, then w(x) = w0(°(x)) and ¼(x) = ¼0(°(x)). Let
e ´ (m;¢; B), the vector of exogenous nominal objects, and let S(e) denote
the set of all steady states associated with e. We say that S(e) ½ S(e0) if
(w; ¼) 2 S(e) implies that there exists (w0; ¼0) 2 S(e0) with (w0; ¼0) equivalent
to (w; ¼). We say that S(e) and S(e0) are equivalent if S(e) ½ S(e0) and
S(e0) ½ S(e).
It follows from this de…nition that equivalence between steady states is

symmetric and transitive. Using this de…nition, I can state the obvious neu-
trality result. If two economies di¤er only in their vectors of exogenous
nominal objects, e and e0, and e = µe0 for some µ 2 R+ (as a convention,
1 = µ1), then S(e) and S(e0) are equivalent.8 However, equivalence does
not hold if e and e0 di¤er but not proportional.

8Let e0 = (m;¢; B) and e = µe0. Let (w0; ¼0) 2 S(e0). Under the vector e, let (w; ¼)
be de…ned as follows. For n ¸ 0, let w(nµ¢) = w0(n¢) and ¼(nµ¢) = ¼0(n¢). Notice
from (3) that p 2 p(x;m;w0) implies µp 2 p(µx; µm;w). Hence, (w; ¼) 2 S(e). It is clear
that (w;¼) is equivalent to (w0; ¼0).
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Corollary 1 If e 6= µe0 for any µ 2 R+, then S(e) and S(e0) are not equiv-
alent. Moreover, if e = (km;¢; kB) and e0 = (m;¢; B) where k ¸ 2 and is
an integer, then S(e0) ½ S(e).

Proof. We begin with the …rst assertion. Without loss of generality,
let e = (m;¢; B) and e0 = (m0;¢; B0). By the hypothesis, either m 6= m0

or B 6= B0. First consider m 6= m0 and assume by contradiction that S(e)
and S(e0) are equivalent. Without loss of generality, assume that m > m0.
Let (w; ¼) 2 S(e) be a Proposition 1 steady state and let (w0; ¼0) 2 S(e0) be
equivalent to (w; ¼). Let supp ¼0 = fa0; a1; :::g with ai < ai+1 for all i. (Note
that ai ¸ i¢.) Because w is strictly increasing and w0 is nondecreasing,
the bijection ° in De…nition 2 from supp ¼ to supp ¼0 is strictly increasing.
That is, °(i¢) < °(j¢) if i < j. Because supp ¼ = B¢, it follows that
°(i¢) = ai. Hence ¼(i¢) = ¼0(ai). But because i¢ · ai, this implies
m · m0, a contradiction. Next consider B 6= B0. Without loss of generality,
assume that B0 is …nite and B0 < B. Let (w; ¼) 2 S(e) be a Proposition 1
steady state. But because supp ¼ = B¢ and because B0¢ is a strict subset of
B¢, no (w0; ¼0) 2 S(e0) is equivalent to (w; ¼).
For the second assertion, let (w0; ¼0) 2 S(e0). The following construction

of (w; ¼) 2 S(e), which is similar to that used to prove neutrality, is well
known. For n ¸ 0 and 0 · j · k¡1, let w(nk¢+ j¢) = w0(n¢), ¼(nk¢) =
¼0(n¢), and ¼(nk¢+j¢) = 0. It is clear that (w; ¼) is equivalent to (w0; ¼0).

A surmise is that if m > m0; then some s 2 S(m;¢;1) has more trade
and higher average welfare than any s0 2 S(m0;¢;1), but that remains to
be established.

Appendix

Proof of Lemma 6
Proof. (i)See Taber and Wallace (1999, page 967).
(ii)It su¢ces to prove that x+max p(m;x) · x+¢+min p(m;x+¢).

Assume by contradiction that p 2 p(m;x), p0 2 p(m;x+¢), and x+p0+¢ <
x+p. Then p0+¢ < p. Let a1 = ¯w(x+p0+¢; p0), a2 = ¯w(x+p0+2¢; p0+¢),
b1 = ¯w(x+ p¡¢; p¡¢), and b2 = ¯w(x+ p; p).
Because a2¡a1 = ¯w(x+p0+2¢;¢) > 0 and b2¡b1 = ¯w(x+p;¢) > 0,

19



by the de…nitions of p and p0, we have

u(a2)¡ u(a1)
a2 ¡ a1 w(x+ p0 + 2¢;¢) · w(m¡ p0;¢); (30)

u(b2)¡ u(b1)
b2 ¡ b1 w(x+ p;¢) ¸ w(m¡ p+¢;¢): (31)

By the de…nitions of ai and bi, we have

b1 ¡ a1 = ¯[w(x+ p¡¢)¡ w(x+ p0 +¢) + w(x+¢;¢)]
b2 ¡ a2 = ¯[w(x+ p)¡ w(x+ p0 + 2¢) + w(x+¢;¢)]:

But, p0 + ¢ < p implies p0 + ¢ · p ¡ ¢ and p0 + 2¢ · p. Hence, b1 > a1
and b2 > a2. Then strict concavity of u implies u(a2)¡u(a1)

a2¡a1 > u(b2)¡u(b1)
b2¡b1 .

This inequality, p0 + 2¢ · p, and concavity of w imply that the left side of
(30) exceeds the left side of (31). Then by (30) and (31), w(m ¡ p0;¢) >
w(m¡ p+¢;¢). But this contradicts p0 < p¡¢ and concavity of w.
(iii)Let a = maxfx2 ¡ x1;m1 ¡ m2g and let p1 = min p(x1;m1). Let

p2 = a+ p1. We assume that x2 > p2 and m2 + p2 < B; otherwise the result
follows immediately. By m2 < m1 and p2 > p1, we have w(m2 + p2; p2) >
w(m1 + p1; p1). By m2 + p2 ¸ m1 + p1, we have w(m2 + p2 + ¢;¢) ·
w(m1 + p1 +¢;¢). Then we have

¯w(x2 ¡ p2;¢) ¸ ¯w(x1 ¡ p1;¢) (32)

¸ u[¯w(m1 + p1 +¢; p1 +¢)]¡ u[¯w(m1 + p1; p1)]

> u[¯w(m2 + p2 +¢; p2 +¢)]¡ u[¯w(m2 + p2; p2)];

where the second inequality follows from p1 2 p(x1;m1) and the third from
strict concavity of u. Note that u[¯w(m + p; p)] + ¯w(x ¡ p), viewed as a
function of p, is concave, and, hence, strictly increasing on [0;min p(x;m)]
and strictly decreasing on [max p(x;m); minfx;B ¡ mg]. Then by (32),
max p(x2;m2) · p2.
(iv)First consider x2 > x1. Let p = x2 ¡ x1. We assume that x1 >

0 and m2 + p < B; otherwise the result follows immediately. We have
¯w(x2¡p;¢) = ¯w(x1;¢) ¸ u[¯w(m1+¢;¢)]¡u(0) > u[¯w(m2+p+¢; p+
¢)]¡ u[¯w(m2 + p; p)], where the …rst inequality follows from 0 2 p(x1;m1)
and u(0) = 0 and the second from strict concavity of u. By the logic used
in the proof of part (iii), max p(x2;m2) · p. Next consider x2 = x1. We
assume that x1 > 0 and m2 < B; otherwise the result follows immediately.
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We have ¯w(x2;¢) = ¯w(x1;¢) ¸ u[¯w(m1 +¢;¢)] ¸ u[¯w(m2 +¢;¢)],
where the …rst inequality follows from 0 2 p(x1;m1). By the logic used in
the proof of part (iii), min p(x2;m2) = 0.
(v)We have u[¯w(¢)] > ¯w(¢); otherwise, by concavity of w, it follows

that u[¯w(m +¢;¢)] · ¯w(¢) for all m ¸ ¢, and, hence, that w(¢) = 0.
By concavity of u and w, this implies that for x > m, u[¯w(m + ¢;¢)] >
¯w(m+¢;¢) ¸ ¯w(x;¢). So 0 =2 p(x;m).

Proof of Lemma 10
Proof. We …rst prove the following.
Claim : If for each x > 0, there exists m such that p(x;m) is a positive

singleton, then w is strictly concave.
The proof of the claim is by induction on the set satisfying strict concavity.

That is, we show that w is strict concave on f0;¢; 2¢g and then show strict
concavity on f0;¢; :::; xg implies strict concavity on f0;¢; :::; x; x+¢g. First,
we prove that 2w(¢) > w(0) + w(2¢) = w(2¢). Taber and Wallace (1999)
show that 2f(x;m) ¸ f(x ¡ ¢;m) + f(x + ¢;m). Because ¼(0) > 0 and
f(0; 0) = 0, it su¢ces to show that 2f(¢; 0) > f(2¢; 0). By Lemma 6
(v), f(¢; 0) = u[¯w(¢)] > ¯w(¢). There are two possibilities for p(2¢; 0).
(i)If ¢ 2 p(2¢; 0), then f(2¢; 0) = u[¯w(¢)] + ¯w(¢) < 2u[¯w(¢)] =
2f(¢; 0). (ii)If 2¢ 2 p(2¢; 0), then f(2¢; 0) = u[¯w(2¢)] · u[2¯w(¢)]
< 2u[¯w(¢)] = 2f(¢; 0), where the …rst inequality follows from concavity
of w and the second from strict concavity of u. Next for the induction
step. Let m be such that p(x;m) is a positive singleton. As above, because
¼(m) > 0, it su¢ces to show that 2f(x;m) > f(x ¡ ¢;m) + f(x + ¢;m).
Let min p(x ¡¢;m) = p. By Lemma 6 (i), there are three possibilities for
min p(x+¢;m). (i)min p(x+¢;m) = p+¢. Because p; p+¢ 2 ¡(x;m) and
because p(x;m) is a singleton, it follows that 2f(x;m) > u[¯w(m+p+¢; p+
¢)]+¯w(x¡p¡¢)+u[¯w(m+p; p)]+¯w(x¡p) = f(x¡¢;m)+f(x+¢;m).
(ii)min p(x+¢;m) = p. By Lemma 6 (i), min p(x+¢;m) ¸ max p(x;m) ¸
min p(x ¡ ¢;m). It follows that p(x;m) = fpg and p ¸ ¢. Therefore,
2f(x;m)¡f(x¡¢;m)¡f(x+¢;m) = 2¯w(x¡p)¡¯w(x¡¢¡p)¡¯w(x+
¢¡ p) > 0, where the last inequality follows from p ¸ ¢ and the induction
assumption. (iii)min p(x + ¢;m) = p + 2¢. Because p + ¢ 2 ¡(x;m), it
follows that 2f(x;m)¡f(x¡¢;m)¡f(x+¢;m) ¸ 2u[¯w(m+p+¢; p+¢)]
¡u[¯w(m+ p; p)]¡u[¯w(m+ p+2¢; p+2¢)] > 0, where the last inequality
follows from strict concavity of u and concavity of w.
Now we can …nish the proof of this lemma. By the claim, it su¢ces
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to prove that 8 x > 0, 9 m¤ such that p(x;m¤) is a positive singleton.
Note that ¯w(m + ¢;¢) < u¡1[¯w(x;¢)] implies p(x;m) = f0g. Also
note that concavity of w implies w(m + ¢;¢)=¢ < W=m. Hence m >
¯W¢=u¡1[¯w(x;¢)] implies p(x;m) = f0g. By Lemma 6 (v), 0 =2 p(x; 0).
Then 9 y = maxfm : 0 =2 p(x;m)g. By Lemma 6 (ii), p(x; y) = f¢g. Then
m¤ = y.9
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