86 research outputs found
The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration.
Abstract Significance: Ascorbate, this multifaceted small molecular weight carbohydrate derivative, plays important roles in a range of cellular processes in plant cells, from the regulation of cell cycle, through cell expansion and senescence. Beyond these physiological functions, ascorbate has a critical role in responses to abiotic stresses, such as high light, high salinity, or drought. The biosynthesis, recycling, and intracellular transport are important elements of the balancing of ascorbate level to the always-changing conditions and demands. Recent Advances: A bidirectional tight relationship was described between ascorbate biosynthesis and the mitochondrial electron transfer chain (mETC), since L-galactono-1,4-lactone dehydrogenase (GLDH), the enzyme catalyzing the ultimate step of ascorbate biosynthesis, uses oxidized cytochrome c as the only electron acceptor and has a role in the assembly of Complex I. A similar bidirectional relationship was revealed between the photosynthetic apparatus and ascorbate biosynthesis since the electron flux through the photosynthetic ETC affects the biosynthesis of ascorbate and the level of ascorbate could affect photosynthesis. Critical Issues: The details of this regulatory network of photosynthetic electron transfer, respiratory electron transfer, and ascorbate biosynthesis are still not clear, as are the potential regulatory role and the regulation of intracellular ascorbate transport and fluxes. Future Directions: The elucidation of the role of ascorbate as an important element of the network of photosynthetic, respiratory ETC and tricarboxylic acid cycle will contribute to understanding plant cell responses to different stress conditions. Antioxid. Redox Signal. 00, 000-000
Physiological and biochemical analyses shed light on the response of <i>Sargassum vulgare</i> to ocean acidification at different time scales
Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a “natural laboratory” to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans
Physiological and biochemical analyses shed light on the response of sargassum vulgare to ocean acidification at different time scales
Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a “natural laboratory” to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans
Vermicompost Supply Modifies Chemical Composition and Improves Nutritive and Medicinal Properties of Date Palm Fruits From Saudi Arabia
To meet the increased demand for phytochemicals, plant cultivation in soil amended with biofertilizers has been developed. Here, we aimed to use vermicompost as an environmentally safe biofertilizer to enhance the nutritive and medicinal value of five common cultivars of Saudi date palm; namely Phoenix dactylifera L. var. Ajwa, Hulwa, Ruthana, Sefri, and Luban. To determine changes in the fruit nutritive composition, primary metabolites, antioxidants, phenolic compounds and mineral profiles were analyzed in the fruits from non-fertilized and vermicompost-fertilized date palms. We also tested how changes in the fruit chemical compositions due to vermicompost fertilization affected their medicinal potentials. Applying vermicomposts generally increased primary metabolites, vitamins, and mineral content as well as the medicinal potential of the date palm fruits. This positive effect is possibly explained by the role of vermicomposts in improving soil health and fertility. Furthermore, clustering analyses and principal component analysis (PCA) indicated cultivar-specific responses. PCA analysis also revealed that the bioactivities of the date palm fruit extracts and their antioxidants tended to display correlated output values. One of the highly accumulated phenolic compounds, β-D-glucogallin, was extracted and purified from P. dactylifera L. var. Ajwa fruits and showed significant antioxidant, anticancer, antibacterial, antimutagenic, and antiprotozoal activities. Overall, applying vermicompost is an innovative approach to increase the nutritive quality and medicinal potential of date palm fruits
Dihydrolipoic acid reduces cytochrome b561 proteins.
Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins
A phylogenetic study of cytochrome b561 proteins
Background: As an antioxidant and cofactor to numerous metabolic enzymes, ascorbate has an essential role in plants and animals. Cytochromes b561 constitute a class of intrinsic membrane proteins involved in ascorbate regeneration. Despite their importance in ascorbate metabolism, no evolutionary analysis has been presented so far on this newly described protein family. Results: Cytochromes b561 have been identified in a large number of phylogenetically distant species, but are absent in fungi and prokaryotes. Most species contain three or four cytochrome b561 paralogous proteins, and the encoding genes usually have four or five exons. At the protein level, sequence similarities are rather low between cytochromes b561 within a single species (34- 45% identity), and among phylogenetically distant species (around 30% identity). However, particular structural features characterizing this protein family are well conserved in members from all species investigated. These features comprise six transmembrane helices, four strictly conserved histidine residues, probably coordinating the two heme molecules, and putative ascorbate and monodehydro-ascorbate (MDHA) substrate-binding sites. Analysis of plant cytochromes b561 shows a separation between those from monocotyledonous and dicotyledonous species in a phylogenetic tree. Conclusions: All cytochromes b561 have probably evolved from a common ancestral protein before the separation of plants and animals. Their phyletic distribution mirrors the use of ascorbate as primary antioxidant, indicating their role in ascorbate homeostasis and antioxidative defense. In plants, the differentiation into four cytochrome b561 isoforms probably occurred before the separation between monocots and dicots. Background Ascorbate (vitamin C) is generally known for its detoxification of damaging reactive oxygen species during aerobic metabolism and under stress conditions [1]. Through the modulation of levels of reactive oxygen species, ascorbate is implicated in the control of cell expansion, cell division and programme
- …