9,466 research outputs found
Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films
A theoretical study of a dielectrophoretic force, i.e. the force acting on an
electrically neutral particle in the inhomogeneous electric field, which is
produced by a ferroelectric domain pattern, is presented. It has been shown by
several researchers that artificially prepared domain patterns with given
geometry in ferroelectric single crystals represent an easy and flexible method
for patterning dielectric nanoobjects using dielectrophoretic forces. The
source of the dielectrophoretic force is a strong and highly inhomogeneous
(stray) electric field, which exists in the vicinity of the ferroelectric
domain walls at the surface of the ferroelectric film. We analyzed
dielectrophoretic forces in the model of a ferroelectric film of a given
thickness with a lamellar 180 domain pattern. The analytical formula
for the spatial distribution of the stray field in the ionic liquid above the
top surface of the film is calculated including the effect of free charge
screening. The spatial distribution of the dielectrophoretic force produced by
the domain pattern is presented. The numerical simulations indicate that the
intersection of the ferroelectric domain wall and the surface of the
ferroelectric film represents a trap for dielectric nanoparticles in the case
of so called positive dielectrophoresis. The effects of electrical neutrality
of dielectric nanoparticles, free charge screening due to the ionic nature of
the liquid, domain pattern geometry, and the Brownian motion on the mechanism
of nanoparticle deposition and the stability of the deposited pattern are
discussed.Comment: Accepted in the Journal of Applied Physics, 10 pages, 5 figure
Dielectrophoresis model for the colossal electroresistance of phase-separated manganites
We propose a dielectrophoresis model for phase-separated manganites. Without
increase of the fraction of metallic phase, an insulator-metal transition
occurs when a uniform electric field applied across the system exceeds a
threshold value. Driven by the dielectrophoretic force, the metallic clusters
reconfigure themselves into stripes along the direction of electric field,
leading to the filamentous percolation. This process, which is time-dependent,
irreversible and anisotropic, is a probable origin of the colossal
electroresistance in manganites.Comment: 4 pages, 5 figure
Electron Temperature Evolution in Expanding Ultracold Neutral Plasmas
We have used the free expansion of ultracold neutral plasmas as a
time-resolved probe of electron temperature. A combination of experimental
measurements of the ion expansion velocity and numerical simulations
characterize the crossover from an elastic-collision regime at low initial
Gamma_e, which is dominated by adiabatic cooling of the electrons, to the
regime of high Gamma_e in which inelastic processes drastically heat the
electrons. We identify the time scales and relative contributions of various
processes, and experimentally show the importance of radiative decay and
disorder-induced electron heating for the first time in ultracold neutral
plasmas
Computer Code System V. S. O. P. (99/11) Update 2011 of V.S.O.P(99)-Version 2009 CODE MANUAL
V.S.O.P. is a computer code system for the comprehensive numerical simulation of the
physics of thermal reactors. The application of the code implies processing of cross sections,
the set-up of the reactor and of the fuel element, neutron spectrum evaluation, neutron
diffusion calculation, fuel burnup, fuel shuffling, reactor control, and thermal hydraulics of
steady states and transients. The neutronics calculations can be performed in up to three
dimensions. Thermal hydraulics is restricted to gas-cooled reactors in two spatial dimensions.
Evaluation of fuel cycle costs over the reactor life time is made using the present worth
method. A broad description of the features of the code has been published in Ref. /1/
Experimental Realization of an Exact Solution to the Vlasov Equations for an Expanding Plasma
We study the expansion of ultracold neutral plasmas in the regime in which
inelastic collisions are negligible. The plasma expands due to the thermal
pressure of the electrons, and for an initial spherically symmetric Gaussian
density profle, the expansion is self-similar. Measurements of the plasma size
and ion kinetic energy using fluorescence imaging and spectroscopy show that
the expansion follows an analytic solution of the Vlasov equations for an
adiabatically expanding plasma.Comment: 4 pages, 4 figure
Topological Aspect of Knotted Vortex Filaments in Excitable Media
Scroll waves exist ubiquitously in three-dimensional excitable media. It's
rotation center can be regarded as a topological object called vortex filament.
In three-dimensional space, the vortex filaments usually form closed loops, and
even linked and knotted. In this letter, we give a rigorous topological
description of knotted vortex filaments. By using the -mapping
topological current theory, we rewrite the topological current form of the
charge density of vortex filaments and use this topological current we reveal
that the Hopf invariant of vortex filaments is just the sum of the linking and
self-linking numbers of the knotted vortex filaments. We think that the precise
expression of the Hopf invariant may imply a new topological constraint on
knotted vortex filaments.Comment: 4 pages, no figures, Accepted by Chin. Phys. Let
Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability
One of the key open questions in the study of relativistic jets is their
interaction with the environment. Here, we study the initial evolution of both
electron-proton and electron-positron relativistic jets, focusing on their
lateral interaction with the ambient plasma. We trace the generation and
evolution of the toroidal magnetic field generated by both kinetic
Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). This magnetic field
collimates the jet. We show that in electron-proton jet, electrons are
perpendicularly accelerated with jet collimation. The magnetic polarity
switches from the clockwise to anti-clockwise in the middle of jet, as the
instabilities weaken. For the electron-positron jet, we find strong mixture of
electron-positron with the ambient plasma, that results in the creation of a
bow shock. Merger of magnetic field current filaments generate density bumps
which initiate a forward shock. The strong mixing between jet and ambient
particles prevents full development of the jet on the studied scale. Our
results therefore provide a direct evidence for both jet collimation and
particle acceleration in the created bow shock. Differences in the magnetic
field structures generated by electron-proton and electron-positron jets may
contribute to observable differences in the polarized properties of emission by
electrons.Comment: 25 pages, 12 figures, ApJ, accepte
Magnetic Field Generation in Core-Sheath Jets via the Kinetic Kelvin-Helmholtz Instability
We have investigated magnetic field generation in velocity shears via the
kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet
core and stationary plasma sheath. Our three-dimensional particle-in-cell
simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15
for both electron-proton and electron-positron plasmas. For electron-proton
plasmas we find generation of strong large-scale DC currents and magnetic
fields which extend over the entire shear-surface and reach thicknesses of a
few tens of electron skin depths. For electron-positron plasmas we find
generation of alternating currents and magnetic fields. Jet and sheath plasmas
are accelerated across the shear surface in the strong magnetic fields
generated by the kKHI. The mixing of jet and sheath plasmas generates
transverse structure similar to that produced by the Weibel instability.Comment: 28 pages, 12 figures, in press, ApJ, September 10, 201
- …