36 research outputs found
Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling
An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical
symmetry consistently from collapse through explosion to nearly complete
deleptonization of the forming neutron star. The evolution time of about 9 s is
short because of nucleon-nucleon correlations in the neutrino opacities. After
a brief phase of accretion-enhanced luminosities (~200 ms), luminosity
equipartition among all species becomes almost perfect and the spectra of
electron antineutrinos and muon/tau antineutrinos very similar. We discuss
consequences for the neutrino-driven wind as a nucleosynthesis site and for
flavor oscillations of SN neutrinos.Comment: 4 pages, 4 eps figures; published as Physical Review Letters, vol.
104, Issue 25, id. 25110
Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows
Motivated by recent hints for sterile neutrinos from the reactor anomaly, we
study active-sterile conversions in a three-flavor scenario (2 active + 1
sterile families) for three different representative times during the
neutrino-cooling evolution of the proto-neutron star born in an
electron-capture supernova. In our "early model" (0.5 s post bounce), the
nu_e-nu_s MSW effect driven by Delta m^2=2.35 eV^2 is dominated by ordinary
matter and leads to a complete nu_e-nu_s swap with little or no trace of
collective flavor oscillations. In our "intermediate" (2.9 s p.b.) and "late
models" (6.5 s p.b.), neutrinos themselves significantly modify the nu_e-nu_s
matter effect, and, in particular in the late model, nu-nu refraction strongly
reduces the matter effect, largely suppressing the overall nu_e-nu_s MSW
conversion. This phenomenon has not been reported in previous studies of
active-sterile supernova neutrino oscillations. We always include the feedback
effect on the electron fraction Y_e due to neutrino oscillations. In all
examples, Y_e is reduced and therefore the presence of sterile neutrinos can
affect the conditions for heavy-element formation in the supernova ejecta, even
if probably not enabling the r-process in the investigated outflows of an
electron-capture supernova. The impact of neutrino-neutrino refraction is
strong but complicated, leaving open the possibility that with a more complete
treatment, or for other supernova models, active-sterile neutrino oscillations
could generate conditions suitable for the r-process.Comment: 23 pages, including 14 figures and 2 tables (minor changes in the
text). Matches published version in JCA
Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry
We review the structure of local Lagrangians and field equations for free
bosonic and fermionic gauge fields of mixed symmetry in flat space. These are
first presented in a constrained setting extending the metric formulation of
linearized gravity, and then the (-)trace constraints on fields and
gauge parameters are eliminated via the introduction of auxiliary fields. We
also display the emergence of Weyl-like symmetries in particular classes of
models in low space-time dimensions.Comment: 136 pages, LaTeX. References added. Final version to appear in La
Rivista del Nuovo Cimento
Effect of collective neutrino flavor oscillations on vp-process nucleosynthesis
The vp process is a primary nucleosynthesis process which occurs in core
collapse supernovae. An essential role in this process is being played by
electron antineutrinos. They generate, by absorption on protons, a supply of
neutrons which, by (n,p) reactions, allow to overcome waiting point nuclei with
rather long beta-decay and proton-capture lifetimes. The synthesis of heavy
elements by the vp process depends sensitively on the \bar{\nu}_e luminosity
and spectrum. As has been shown recently, the latter are affected by collective
neutrino flavor oscillations which can swap the \bar{\nu}_e and
\bar{\nu}_{\mu,\tau} spectra above a certain split energy. Assuming such a swap
scenario, we have studied the impact of collective neutrino flavor oscillations
on the vp-process nucleosynthesis. Our results show that the production of
light p-nuclei up to mass number A=108 is very sensitive to collective neutrino
oscillations.Comment: 4 pages, 3 figures, submitted to Physics Letters
Have Superheavy Elements been Produced in Nature?
We discuss the possibility whether superheavy elements can be produced in
Nature by the astrophysical rapid neutron capture process. To this end we have
performed fully dynamical network r-process calculations assuming an
environment with neutron-to-seed ratio large enough to produce superheavy
nuclei. Our calculations include two sets of nuclear masses and fission
barriers and include all possible fission channels and the associated fission
yield distributions. Our calculations produce superheavy nuclei with A ~ 300
that however decay on timescales of days.Comment: 12 pages, 11 figure