1,978 research outputs found

    General scheme for stable single and multiatom nanomagnets according to symmetry selection rules

    Get PDF
    At low temperature, information can be stored in the orientation of the localized magnetic moment of an adatom. However, scattering of electrons and phonons with the nanomagnet leads its state to have incoherent classical dynamics and might cause fast loss of the encoded information. Recently, it has been understood that such scattering obeys certain selection rules due to the symmetries of the system. By analyzing the point-group symmetry of the surface, the time-reversal symmetry and the magnitude of the adatom effective spin, we identify which nanomagnets configurations are to be avoided and which are promising to encode a stable bit. A new tool of investigation is introduced and exploited: the quasi-spin quantum number. By means of this tool, our results are easily generalized to a broad class of bipartite cluster configurations where adatoms are coupled through Heisenberg-like interactions. Finally, to make contact with the experiments, numerical simulations have been performed to show how such stable configurations respond to typical scanning tunneling microscopy measurements.Comment: 15 pages, 7 figures. Published versio

    Theory for Spin-Polarized Oscillations in Nonlinear Magneto-Optics due to Quantum Well States

    Full text link
    Using an electronic tight-binding theory we calculate the nonlinear magneto-optical response from an x-Cu/1Fe/Cu(001) film as a function of frequency and Cu overlayer thickness (x=3 ... 25). We find very strong spin-polarized quantum well oscillations in the nonlinear magneto-optical Kerr effect (NOLIMOKE). These are enhanced by the large density of Fe dd states close to the Fermi level acting as intermediate states for frequency doubling. In good agreement with experiment we find two oscillation periods of 6-7 and 11 monolayers the latter being more pronounced.Comment: 12 pages, Revtex, 3 postscript figure

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    PyDamage: automated ancient damage identification and estimation for contigs in ancient DNAde novoassembly

    Get PDF
    DNA de novo assembly can be used to reconstruct longer stretches of DNA (contigs), including genes and even genomes, from short DNA sequencing reads. Applying this technique to metagenomic data derived from archaeological remains, such as paleofeces and dental calculus, we can investigate past microbiome functional diversity that may be absent or underrepresented in the modern microbiome gene catalogue. However, compared to modern samples, ancient samples are often burdened with environmental contamination, resulting in metagenomic datasets that represent mixtures of ancient and modern DNA. The ability to rapidly and reliably establish the authenticity and integrity of ancient samples is essential for ancient DNA studies, and the ability to distinguish between ancient and modern sequences is particularly important for ancient microbiome studies. Characteristic patterns of ancient DNA damage, namely DNA fragmentation and cytosine deamination (observed as C-to-T transitions) are typically used to authenticate ancient samples and sequences, but existing tools for inspecting and filtering aDNA damage either compute it at the read level, which leads to high data loss and lower quality when used in combination with de novo assembly, or require manual inspection, which is impractical for ancient assemblies that typically contain tens to hundreds of thousands of contigs. To address these challenges, we designed PyDamage, a robust, automated approach for aDNA damage estimation and authentication of de novo assembled aDNA. PyDamage uses a likelihood ratio based approach to discriminate between truly ancient contigs and contigs originating from modern contamination. We test PyDamage on both on simulated aDNA data and archaeological paleofeces, and we demonstrate its ability to reliably and automatically identify contigs bearing DNA damage characteristic of aDNA. Coupled with aDNA de novo assembly, Pydamage opens up new doors to explore functional diversity in ancient metagenomic datasets

    Sensoria: An exploratory interdisciplinary framework for researching multimodal & sensory experiences

    Get PDF
    This paper describes the development and salience of an original and innovative interdisciplinary approach, Sensoria, that combines methods and techniques from social science and performance to address the methodological challenges of researching sensory/multimodal experiences. It sets out the core components and methodological principles that underpin the approach and uses an illustrative example to show how it can facilitate research on hard to access sensorial experiences, to access, understand and analyse people’s experiences and perspectives of touch, a highly tacit sensory mode. The paper discusses the methodological contribution and challenges of this approach to sensory research for social science and artistic practice and ‘more-than-representational’ research more generally. It concludes by making a case for more critical research spaces at the intersection of these disciplines to foster multi-dimensional research dialogues and to advance the exploration and understanding of the relationship between the sensory, social and the digital

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure

    Randomized clinical trial on epidural versus patient-controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway.

    Get PDF
    OBJECTIVE: To compare epidural analgesia (EDA) to patient-controlled opioid-based analgesia (PCA) in patients undergoing laparoscopic colorectal surgery. BACKGROUND: EDA is mainstay of multimodal pain management within enhanced recovery pathways [enhanced recovery after surgery (ERAS)]. For laparoscopic colorectal resections, the benefit of epidurals remains debated. Some consider EDA as useful, whereas others perceive epidurals as unnecessary or even deleterious. METHODS: A total of 128 patients undergoing elective laparoscopic colorectal resections were enrolled in a randomized clinical trial comparing EDA versus PCA. Primary end point was medical recovery. Overall complications, hospital stay, perioperative vasopressor requirements, and postoperative pain scores were secondary outcome measures. Analysis was performed according to the intention-to-treat principle. RESULTS: Final analysis included 65 EDA patients and 57 PCA patients. Both groups were similar regarding baseline characteristics. Medical recovery required a median of 5 days (interquartile range [IQR], 3-7.5 days) in EDA patients and 4 days (IQR, 3-6 days) in the PCA group (P = 0.082). PCA patients had significantly less overall complications [19 (33%) vs 35 (54%); P = 0.029] but a similar hospital stay [5 days (IQR, 4-8 days) vs 7 days (IQR, 4.5-12 days); P = 0.434]. Significantly more EDA patients needed vasopressor treatment perioperatively (90% vs 74%, P = 0.018), the day of surgery (27% vs 4%, P < 0.001), and on postoperative day 1 (29% vs 4%, P < 0.001), whereas no difference in postoperative pain scores was noted. CONCLUSIONS: Epidurals seem to slow down recovery after laparoscopic colorectal resections without adding obvious benefits. EDA can therefore not be recommended as part of ERAS pathways in laparoscopic colorectal surgery

    Enhanced recovery pathway for urgent colectomy.

    Get PDF
    BACKGROUND: Enhanced recovery protocols have been proven to decrease complications and hospital stay following elective colorectal surgery. However, these principles have not yet been reported for urgent surgery procedures. We aimed to assess our initial experience with urgent colectomies performed within an established enhanced recovery pathway. METHODS: In a prospective cohort study, all patients undergoing colonic resection between April 2012 and March 2013 were treated according to a standardized enhanced recovery protocol. Urgent surgeries were compared with the elective procedures with regards to baseline characteristics, compliance with enhanced recovery items, and clinical outcome. RESULTS: Patients (N = 28) requiring urgent colonic resection were included and compared with patients undergoing elective colectomy (N = 63). Overall compliance with the protocol was 57% for the urgent compared with 77% for the elective procedures (p = 0.006). The pre-operative compliance was 64 versus 96% (p < 0.001), the intra-operative compliance was 77 versus 86% (p = 0.145), and the post-operative compliance was 49 versus 67% (p = 0.015), for the urgent and elective resections, respectively. Overall, 18 urgent patients (64%) and 32 elective patients (51%) developed postoperative complications (p = 0.261). Median postoperative length of stay was 8 days in the urgent setting compared with 5 days in the elective setting (p = 0.006). CONCLUSIONS: Many of the intra-operative and post-operative enhanced recovery items can also be applied to urgent colectomy, entailing outcomes that approach the results achieved in the elective setting
    corecore