130 research outputs found
Resonant forcing of nonlinear systems of differential equations
We study resonances of nonlinear systems of differential equations, including
but not limited to the equations of motion of a particle moving in a potential.
We use the calculus of variations to determine the minimal additive forcing
function that induces a desired terminal response, such as an energy in the
case of a physical system. We include the additional constraint that only
select degrees of freedom be forced, corresponding to a very general class of
problems in which not all of the degrees of freedom in an experimental system
are accessible to forcing. We find that certain Lagrange multipliers take on a
fundamental physical role as the effective forcing experienced by the degrees
of freedom which are not forced directly. Furthermore, we find that the product
of the displacement of nearby trajectories and the effective total forcing
function is a conserved quantity. We demonstrate the efficacy of this
methodology with several examples.Comment: 9 pages, 3 figure
Stability borders of feedback control of delayed measured systems
When stabilization of unstable periodic orbits or fixed points by the method
given by Ott, Grebogi and Yorke (OGY) has to be based on a measurement delayed
by orbit lengths, the performance of unmodified OGY method is expected
to decline. For experimental considerations, it is desired to know the range of
stability with minimal knowledge of the system. We find that unmodified OGY
control fails beyond a maximal Ljapunov number of
. In this paper the area of stability is
investigated both for OGY control of known fixed points and for difference
control of unknown or inaccurately known fixed points. An estimated value of
the control gain is given. Finally we outline what extensions have to be
considered if one wants to stabilize fixed points with Ljapunov numbers above
.Comment: 5 pages LaTeX using revtex and epsfig (4 figs included). Revised
versio
A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere
A new airborne instrument based on pulsed cavity ring-down spectroscopy for simultaneous detection of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere is being developed for global atmospheric monitoring. OCIS codes: 010.0010, 120.0120, 140.0140, 280.0280, 300.0300, 300.6260, 300.6360
Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement
Difference control schemes for controlling unstable fixed points become
important if the exact position of the fixed point is unavailable or moving due
to drifting parameters. We propose a memory difference control method for
stabilization of a priori unknown unstable fixed points by introducing a memory
term. If the amplitude of the control applied in the previous time step is
added to the present control signal, fixed points with arbitrary Lyapunov
numbers can be controlled. This method is also extended to compensate arbitrary
time steps of measurement delay. We show that our method stabilizes orbits of
the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70,
056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205
Resonant forcing of select degrees of freedom of multidimensional chaotic map dynamics
We study resonances of multidimensional chaotic map dynamics. We use the
calculus of variations to determine the additive forcing function that induces
the largest response, that is, the greatest deviation from the unperturbed
dynamics. We include the additional constraint that only select degrees of
freedom be forced, corresponding to a very general class of problems in which
not all of the degrees of freedom in an experimental system are accessible to
forcing. We find that certain Lagrange multipliers take on a fundamental
physical role as the efficiency of the forcing function and the effective
forcing experienced by the degrees of freedom which are not forced directly.
Furthermore, we find that the product of the displacement of nearby
trajectories and the effective total forcing function is a conserved quantity.
We demonstrate the efficacy of this methodology with several examples.Comment: 11 pages, 3 figure
Recommended from our members
Effect of petrochemical industrial emissions of reactive alkenes and NO\u3csub\u3ex\u3c/sub\u3e on tropospheric ozone formation in Houston, Texas
Petrochemical industrial facilities can emit large amounts of highly reactive hydrocarbons and NOx to the atmosphere; in the summertime, such colocated emissions are shown to consistently result in rapid and efficient ozone (O3) formation downwind. Airborne measurements show initial hydrocarbon reactivity in petrochemical source plumes in the Houston, TX, metropolitan area is primarily due to routine emissions of the alkenes propene and ethene. Reported emissions of these highly reactive compounds are substantially lower than emissions inferred from measurements in the plumes from these sources. Net O3 formation rates and yields per NOx molecule oxidized in these petrochemical industrial source plumes are substantially higher than rates and yields observed in urban or rural power plant plumes. These observations suggest that reductions in reactive alkene emissions from petrochemical industrial sources are required to effectively address the most extreme O3 exceedences in the Houston metropolitan area
Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project
We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion. <br></br> Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day<sup>&minus;1</sup> between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were emitted and the time they were observed in dense layers above the sea-ice inversion layer
How to increase technology transfers to developing countries: a synthesis of the evidence
The existing United Nations Framework Convention on Climate Change (UNFCCC) has failed to deliver the rate of low-carbon technology transfer (TT) required to curb GHG emissions in developing countries. This failure has exposed the limitations of universalism and renewed interest in bilateral approaches to TT. Gaps are identified in the UNFCCC approach to climate change TT: missing links between international institutions and the national enabling environments that encourage private investment; a non-differentiated approach for (developing) country and technology characteristics; and a lack of clear measurements of the volume and effectiveness of TTs. Evidence from econometric literature and business experience on climate change TT is reviewed, so as to address the identified pitfalls of the UNFCCC process. Strengths and weaknesses of different methodological approaches are highlighted. International policy recommendations are offered aimed at improving the level of emission reductions achieved through TT
Are Tall People Less Risk Averse than Others?
This paper examines the question of whether risk aversion of prime-age workers is negatively correlated with human height to a statistically significant degree. A variety of estimation methods, tests and specifications yield robust results that permit one to answer this question in the affirmative. Hausman-Taylor panel estimates, however, reveal that height effects disappear if personality traits and skills, parents' behaviour, and interactions between environment and individual abilities appear simultaneously. Height is a good proxy for these influences if they are not observable. Not only one factor but a combination of several traits and interaction effects can describe the time-invariant individual effect in a panel model of risk attitude
- …