31 research outputs found

    Variable clinical expression in patients with a germline MEN1 disease gene mutation: clues to a genotype–phenotype correlation

    Get PDF
    Multiple endocrine neoplasia type 1 is an inherited endocrine tumor syndrome, predominantly characterized by tumors of the parathyroid glands, gastroenteropancreatic tumors, pituitary adenomas, adrenal adenomas, and neuroendocrine tumors of the thymus, lungs or stomach. Multiple endocrine neoplasia type 1 is caused by germline mutations of the multiple endocrine neoplasia type 1 tumor suppressor gene. The initial germline mutation, loss of the wild-type allele, and modifying genetic and possibly epigenetic and environmental events eventually result in multiple endocrine neoplasia type 1 tumors. Our understanding of the function of the multiple endocrine neoplasia type 1 gene product, menin, has increased significantly over the years. However, to date, no clear genotype–phenotype correlation has been established

    Recent results of basic and clinical research in MEN1:opportunities to improve early detection and treatment

    Get PDF
    Due to the variable expression of multiple endocrine neoplasia type 1 (MEN1), it is difficult to predict the course of the disease. However, knowledge about the normal function of the MEN1 gene product, together with the effects of cellular derangement by subsequent genetic events, has increased considerably. At first, the possible existence of a genotype-phenotype correlation is discussed. Thus, mild-and late-onset phenotypes may be distinguished from more malignant phenotypes depending on the character of the primary MEN1 disease gene mutation. Subsequently, tumor-promoting factors such as gender, additional genetic mutations and ecogenetic factors may contribute to the course of the disease. New developments in management are based on the knowledge and experience of the multidisciplinary teams involved. Finally, the metabolic effects of MEN1 mutations in aged patients are discussed. Early identification of predisposition to the disease, together with knowledge about the natural history of specific mutations, risks of additional mutations and periodic clinical monitoring, allow early treatment and may improve life expectancy and quality of life

    Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role in β-Cell Death in Type 2 Diabetes Mellitus

    Get PDF
    The presence of fibrillar protein deposits (amyloid) of human islet amyloid polypeptide (hIAPP) in the pancreatic islets of Langerhans is thought to be related to death of the insulin-producing islet β-cells in type 2 diabetes mellitus (DM2). The mechanism of hIAPP-induced β-cell death is not understood. However, there is growing evidence that hIAPP-induced disruption of β-cell membranes is the cause of hIAPP cytotoxicity. Amyloid cytotoxicity by membrane damage has not only been suggested for hIAPP, but also for peptides and proteins related to other misfolding diseases, like Alzheimer's disease, Parkinson's disease, and prion diseases. Here we review the interaction of hIAPP with membranes, and discuss recent progress in the field, with a focus on hIAPP structure and on the proposed mechanisms of hIAPP-induced membrane damage in relation to β-cell death in DM2

    Von Hippel-Lindau Disease

    Get PDF
    A germline mutation in the Von-Hippel Lindau (VHL) gene predisposes carriers to development of abundantly vascularised tumours in the retina, cerebellum, spine, kidney, adrenal gland and pancreas. Most VHL patients die from the consequences of cerebellar haemangioblastoma or renal cell carcinoma. The VHL gene is a tumour suppressor gene and is involved in angiogenesis by regulation of the activity of hypoxia-inducible factor 1-α (HIF1-α). Clinical diagnosis of VHL can be confirmed by molecular genetic analysis of the VHL gene, which is informative in virtually all VHL families. A patient with (suspicion for) VHL is an indication for genetic counselling and periodical examination

    LRIG1 negatively regulates RET mutants and is downregulated in thyroid cancer

    Get PDF
    Papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC) are characterized by genomic rearrangements and point mutations in the proto-oncogene RET. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a suppressor of various receptor tyrosine kinases, including RET. LRIG1 expression levels are associated with patient survival in many cancer types. In the present study, we investigated whether the oncogenic RET mutants RET2A (C634R) and RET2B (M918T) were regulated by LRIG1, and the possible effects of LRIG1 expression in thyroid cancer were investigated in three different clinical cohorts and in a RET2B-driven mouse model of MTC. LRIG1 was shown to physically interact with both RET2A and RET2B and to restrict their ligand-independent activation. LRIG1 mRNA levels were downregulated in PTC and MTC compared to normal thyroid gland tissue. There was no apparent association between LRIG1 RNA or protein expression levels and patient survival in the studied cohorts. The transgenic RET2B mice developed pre-cancerous medullary thyroid lesions at a high frequency (36%); however, no overt cancers were observed. There was no significant difference in the incidence of pre-cancerous lesions between Lrig1 wild-Type and Lrig1-deficient RET2B mice. In conclusion, the findings that LRIG1 is a negative regulator of RET2A and RET2B and is also downregulated in PTC and MTC may suggest that LRIG1 functions as a thyroid tumor suppressor.Fil: Lindquist, David. Universidad de Umea; SueciaFil: Alsina, Fernando Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Herdenberg, Carl. Universidad de Umea; SueciaFil: Larsson, Catharina. Karolinska University Hospital;Fil: Höppener, Jo. University Medical Center Utrecht;Fil: Wang, Na. Karolinska University Hospital;Fil: Paratcha, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Tarján, Miklós. Falu Lasarett; SueciaFil: Tot, Tibor. Falu Lasarett; SueciaFil: Henriksson, Roger. Universidad de Umea; SueciaFil: Hedman, Håkan. Universidad de Umea; Sueci

    The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes

    Get PDF
    Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately leading to membrane damage and β-cell death. Here, we used variants of the hIAPP1–19 fragment and model membranes of phosphatidylcholine and phosphatidylserine (7:3, molar ratio) to examine the role of this disulfide in membrane interactions. We found that the disulfide bond has a minor effect on membrane insertion properties and peptide conformational behavior, as studied by monolayer techniques, 2H NMR, ThT-fluorescence, membrane leakage, and CD spectroscopy. The results suggest that the disulfide bond does not play a significant role in hIAPP–membrane interactions. Hence, the fact that this bond is conserved is most likely related exclusively to the biological activity of IAPP as a hormone

    Amyloid Proteins and Peripheral Neuropathy

    No full text
    Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature—deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for “peripheral amyloid neuropathies”

    Inhibition of amyloid formation of human amylin

    No full text
    No abstract available
    corecore